depthwise_conv_kernel.cpp 3.4 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef DEPTHWISECONV_OP

#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h"

namespace paddle_mobile {
namespace operators {

template <>
bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
  DLOG << " depthwise conv kernel init begin ";
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
27
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
28
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
29
      "need equal");
L
liuruilong 已提交
30 31 32 33 34 35 36 37 38
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);
  this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
  DLOG << " depthwise conv kernel init end ";
  return true;
}

template <>
L
liuruilong 已提交
39 40
void DepthwiseConvKernel<GPU_CL, float>::Compute(
    const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  auto output = param.Output();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();

L
liuruilong 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);

  CL_CHECK_ERRORS(status);

  status =
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                             default_work_size.data(), NULL, 0, NULL, NULL);

  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
82 83 84 85 86 87 88
}

template class DepthwiseConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

L
liuruilong 已提交
89
#endif