conv_add_kernel.cpp 3.8 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
L
liuruilong 已提交
24
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
25
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
26
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
27
      "need equal");
L
liuruilong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
    this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
  } else if (param->Filter()->dims()[1] == 1) {
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
    this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }

L
liuruilong 已提交
44 45 46 47 48
  return true;
}

template <>
void ConvAddKernel<GPU_CL, float>::Compute(
L
liuruilong 已提交
49 50 51 52 53 54 55 56 57
    const FusionConvAddParam<GPU_CL> &param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  auto biase = param.Bias()->GetCLImage();
L
liuruilong 已提交
58
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
59 60 61
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
L
liuruilong 已提交
62
  int dilation = param.Dilations()[0];
L
liuruilong 已提交
63 64
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();
L
liuruilong 已提交
65 66
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();
L
liuruilong 已提交
67

L
liuruilong 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
  status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);

  CL_CHECK_ERRORS(status);

  status =
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                             default_work_size.data(), NULL, 0, NULL, NULL);

  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
93
}
L
liuruilong 已提交
94 95 96 97 98 99 100

template class ConvAddKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif