reduce_op_function.h 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/fluid/eigen.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T,
          size_t D,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = lite::fluid::EigenTensor<T, D, MajorType, IndexType>;
template <typename T,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenScalar = lite::fluid::EigenScalar<T, MajorType, IndexType>;
template <typename T,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = lite::fluid::EigenVector<T, MajorType, IndexType>;

template <lite::TargetType Target,
          typename T,
          size_t D,
          size_t R_D,
          typename Functor>
// const lite::Context<Target>& context,
void ReduceFunctor(const lite::Tensor& input,
                   lite::Tensor* output,
                   const std::vector<int>& dims,
                   bool keep_dim) {
  auto x = EigenTensor<T, D>::From(input);
50

51
  auto reduce_dim = Eigen::array<int, R_D>();
52 53 54 55 56 57
  auto x_rank = static_cast<int>(x.dimensions().size());
  for (size_t i = 0; i < dims.size(); ++i) {
    if (dims[i] < 0) {
      reduce_dim[i] = x_rank + dims[i];
    } else {
      reduce_dim[i] = dims[i];
58 59 60
    }
  }

61
  Functor functor;
62 63 64 65
  if (D == 1) {
    auto out = EigenScalar<T>::From(output);
    functor(&x, &out, reduce_dim);
  } else {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto fun_name = typeid(Functor).name();
    const char* sum_fun = "SumFunctor";
    auto te = strstr(fun_name, sum_fun);
    if (D == 3 && R_D == 1 && te != NULL) {
      lite::DDim input_dims = input.dims();
      const T* input_data = input.data<T>();
      T* output_data = output->mutable_data<T>();
      for (int i = 0; i < input_dims[0]; i++) {
        for (int k = 0; k < input_dims[2]; k++) {
          int out_d = i * input_dims[2] + k;
          T output_temp = 0;
          for (int j = 0; j < input_dims[1]; j++) {
            int input_d =
                i * input_dims[1] * input_dims[2] + j * input_dims[2] + k;
            output_temp = output_temp + input_data[input_d];
          }
          output_data[out_d] = output_temp;
        }
      }
    } else {
      auto out = EigenTensor<T, (D - R_D)>::From(*output, output->dims());
      functor(&x, &out, reduce_dim);
    }
89 90 91 92 93 94 95
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle