light_api.cc 3.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"

namespace paddle {
namespace lite {

void LightPredictor::Build(const std::string& model_dir,
21 22 23 24
                           const std::string& model_buffer,
                           const std::string& param_buffer,
                           lite_api::LiteModelType model_type,
                           bool model_from_memory) {
Y
Yan Chunwei 已提交
25 26 27 28
  cpp::ProgramDesc desc;
  switch (model_type) {
#ifndef LITE_ON_TINY_PUBLISH
    case lite_api::LiteModelType::kProtobuf:
29
      LoadModelPb(model_dir, "", "", scope_.get(), &desc);
Y
Yan Chunwei 已提交
30 31
      break;
#endif
32 33 34 35 36 37 38
    case lite_api::LiteModelType::kNaiveBuffer: {
      if (model_from_memory) {
        LoadModelNaiveFromMemory(
            model_buffer, param_buffer, scope_.get(), &desc);
      } else {
        LoadModelNaive(model_dir, scope_.get(), &desc);
      }
Y
Yan Chunwei 已提交
39
      break;
40
    }
Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    default:
      LOG(FATAL) << "Unknown model type";
  }
  BuildRuntimeProgram(desc);
}

Tensor* LightPredictor::GetInput(size_t offset) {
  auto* _feed_list = program_->exec_scope()->FindVar("feed");
  CHECK(_feed_list) << "no feed variable in exec_scope";
  auto* feed_list = _feed_list->GetMutable<std::vector<Tensor>>();
  if (offset >= feed_list->size()) {
    feed_list->resize(offset + 1);
  }
  return &feed_list->at(offset);
}

const Tensor* LightPredictor::GetOutput(size_t offset) {
  auto* _fetch_list = program_->exec_scope()->FindVar("fetch");
  CHECK(_fetch_list) << "no fatch variable in exec_scope";
  auto& fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
  CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow";
  return &fetch_list.at(offset);
}

void LightPredictor::BuildRuntimeProgram(const cpp::ProgramDesc& prog) {
  std::vector<Instruction> insts;
  // 1. Create op first
  Program program(prog, scope_, {});

  // 2. Create Instructs

  // Create the kernels of the target places, and filter out the specific
  // kernel with the target alias.
  for (auto& op : program.ops()) {
    auto kernel_type = op->op_info()->GetAttr<std::string>(kKernelTypeAttr);
    std::string op_type, alias;
    Place place;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    auto kernels = op->CreateKernels({place});
    // filter out a kernel
    auto it = std::find_if(
        kernels.begin(), kernels.end(), [&](std::unique_ptr<KernelBase>& it) {
          return it->alias() == alias;
        });
    CHECK(it != kernels.end());
    (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
    insts.emplace_back(op, std::move(*it));
  }
  program_.reset(new RuntimeProgram(std::move(insts)));
  CHECK(program.exec_scope());
  program_->set_exec_scope(program.exec_scope());
}

}  // namespace lite
}  // namespace paddle