activation_compute.h 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

class ReluCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~ReluCompute() = default;
};

class LeakyReluCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~LeakyReluCompute() = default;
};

class ReluClippedCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~ReluClippedCompute() = default;
};

class PReluCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~PReluCompute() = default;
};

class SigmoidCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~SigmoidCompute() = default;
};

class TanhCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~TanhCompute() = default;
};

class SwishCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~SwishCompute() = default;
};

class Relu6Compute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~Relu6Compute() = default;
};

class LogCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~LogCompute() = default;
};
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114

class ExpCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~ExpCompute() = default;
};

115 116 117 118 119 120 121 122 123
class FloorCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override;

  virtual ~FloorCompute() = default;
};

Y
Yan Chunwei 已提交
124 125 126 127
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle