test_yologpu.cpp 6.5 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
L
liuruilong 已提交
16
#include <thread>  // NOLINT
17
#include "../../src/common/types.h"
Y
yangfei 已提交
18
#include "../../src/io/paddle_test_inference_api.h"
Y
yangfei 已提交
19 20
#include "../test_helper.h"
#include "../test_include.h"
21
void t1() {
22 23
  paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> paddle_mobile_gpu;
  paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile_cpu;
Y
yangfei 已提交
24 25 26 27 28
  paddle_mobile::PaddleTester<paddle_mobile::CPU> paddle_test_cpu;
  paddle_mobile::PaddleTester<paddle_mobile::GPU_CL> paddle_test_gpu;
  printf("cpu time:%f\n", paddle_test_cpu.CaculatePredictTime());
  std::string path = "/data/local/tmp/bin";
  printf("gpu time:%f\n", paddle_test_gpu.CaculatePredictTime(&path));
29 30
  //    paddle_mobile.SetThreadNum(4);
#ifdef PADDLE_MOBILE_CL
31
  paddle_mobile_gpu.SetCLPath("/data/local/tmp/bin");
32 33
#endif
  auto time1 = paddle_mobile::time();
L
liuruilong 已提交
34 35 36
  auto isok =
      paddle_mobile_gpu.Load(std::string(g_yolo_vision) + "/model",
                             std::string(g_yolo_vision) + "/params", true);
Y
yangfei 已提交
37

38 39 40 41 42 43 44 45
  //  auto isok = paddle_mobile.Load(std::string(g_yolo_mul), true);
  if (isok) {
    auto time2 = paddle_mobile::time();
    std::cout << "load cost :" << paddle_mobile::time_diff(time1, time2) << "ms"
              << std::endl;

    std::vector<float> input;
    std::vector<int64_t> dims{1, 3, 416, 416};
L
liuruilong 已提交
46
    GetInput<float>(g_test_image_1x3x416x416_vision_yolo_input, &input, dims);
47 48 49 50 51

    std::vector<float> vec_result;
    //            = paddle_mobile.Predict(input, dims);

    auto time3 = paddle_mobile::time();
L
liuruilong 已提交
52
    int max = 1;
53
    for (int i = 0; i < max; ++i) {
54
      vec_result = paddle_mobile_gpu.Predict(input, dims);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    }
    auto time4 = paddle_mobile::time();

    //    auto time3 = paddle_mobile::time();

    //    for (int i = 0; i < 10; ++i) {
    //      auto vec_result = paddle_mobile.Predict(input, dims);
    //    }

    //    auto time4 = paddle_mobile::time();

    std::cout << "predict cost :"
              << paddle_mobile::time_diff(time3, time4) / max << "ms"
              << std::endl;
    std::vector<float>::iterator biggest =
        std::max_element(std::begin(vec_result), std::end(vec_result));
    std::cout << " Max element is " << *biggest << " at position "
              << std::distance(std::begin(vec_result), biggest) << std::endl;
    //        for (float i : vec_result) {
    //            std::cout << i << std::endl;
    //        }
  }
}

void t2() {
L
liuruilong 已提交
80 81
  paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> paddle_mobile;
  //    paddle_mobile.SetThreadNum(4);
82 83 84
#ifdef PADDLE_MOBILE_CL
  paddle_mobile.SetCLPath("/data/local/tmp/bin");
#endif
L
liuruilong 已提交
85
  auto time1 = paddle_mobile::time();
86 87
  auto isok = paddle_mobile.Load(std::string(g_yolo_mul) + "/model",
                                 std::string(g_yolo_mul) + "/params", true);
Y
yangfei 已提交
88

89
  //  auto isok = paddle_mobile.Load(std::string(g_yolo_mul), true);
L
liuruilong 已提交
90 91 92 93
  if (isok) {
    auto time2 = paddle_mobile::time();
    std::cout << "load cost :" << paddle_mobile::time_diff(time1, time2) << "ms"
              << std::endl;
Y
yangfei 已提交
94

L
liuruilong 已提交
95 96 97
    std::vector<float> input;
    std::vector<int64_t> dims{1, 3, 416, 416};
    GetInput<float>(g_yolo_img, &input, dims);
Y
yangfei 已提交
98

L
liuruilong 已提交
99 100
    std::vector<float> vec_result;
    //            = paddle_mobile.Predict(input, dims);
Y
yangfei 已提交
101

L
liuruilong 已提交
102 103 104 105 106 107
    auto time3 = paddle_mobile::time();
    int max = 10;
    for (int i = 0; i < max; ++i) {
      vec_result = paddle_mobile.Predict(input, dims);
    }
    auto time4 = paddle_mobile::time();
Y
yangfei 已提交
108

L
liuruilong 已提交
109
    //    auto time3 = paddle_mobile::time();
Y
yangfei 已提交
110

L
liuruilong 已提交
111 112 113
    //    for (int i = 0; i < 10; ++i) {
    //      auto vec_result = paddle_mobile.Predict(input, dims);
    //    }
Y
yangfei 已提交
114

L
liuruilong 已提交
115
    //    auto time4 = paddle_mobile::time();
Y
yangfei 已提交
116

L
liuruilong 已提交
117 118 119 120 121 122 123 124 125 126 127
    std::cout << "predict cost :"
              << paddle_mobile::time_diff(time3, time4) / max << "ms"
              << std::endl;
    std::vector<float>::iterator biggest =
        std::max_element(std::begin(vec_result), std::end(vec_result));
    std::cout << " Max element is " << *biggest << " at position "
              << std::distance(std::begin(vec_result), biggest) << std::endl;
    //        for (float i : vec_result) {
    //            std::cout << i << std::endl;
    //        }
  }
128 129 130 131 132
}

void t3() {
  paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
  //    paddle_mobile.SetThreadNum(4);
L
liuruilong 已提交
133
  // #ifdef PADDLE_MOBILE_CL
134
  //  paddle_mobile.SetCLPath("/data/local/tmp/bin");
L
liuruilong 已提交
135
  // #endif
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  auto time1 = paddle_mobile::time();
  auto isok = paddle_mobile.Load(std::string(g_yolo_mul) + "/model",
                                 std::string(g_yolo_mul) + "/params", true);

  //  auto isok = paddle_mobile.Load(std::string(g_yolo_mul), true);
  if (isok) {
    auto time2 = paddle_mobile::time();
    std::cout << "load cost :" << paddle_mobile::time_diff(time1, time2) << "ms"
              << std::endl;

    std::vector<float> input;
    std::vector<int64_t> dims{1, 3, 416, 416};
    GetInput<float>(g_yolo_img, &input, dims);

    std::vector<float> vec_result = paddle_mobile.Predict(input, dims);

    auto time3 = paddle_mobile::time();
    int max = 10;
    for (int i = 0; i < max; ++i) {
      vec_result = paddle_mobile.Predict(input, dims);
    }
    auto time4 = paddle_mobile::time();

    //    auto time3 = paddle_mobile::time();

    //    for (int i = 0; i < 10; ++i) {
    //      auto vec_result = paddle_mobile.Predict(input, dims);
    //    }

    //    auto time4 = paddle_mobile::time();

    std::cout << "predict cost :"
              << paddle_mobile::time_diff(time3, time4) / max << "ms"
              << std::endl;
    std::vector<float>::iterator biggest =
        std::max_element(std::begin(vec_result), std::end(vec_result));
    std::cout << " Max element is " << *biggest << " at position "
              << std::distance(std::begin(vec_result), biggest) << std::endl;
    //        for (float i : vec_result) {
    //            std::cout << i << std::endl;
    //        }
  }
}

int main() {
  //  std::thread th1(t1);
182
  //      std::thread th2(t2);
Y
yangfei 已提交
183 184
  //  std::thread th3(t3);
  std::thread th1(t1);
185 186
  //  th1.join();
  //      th2.join();
Y
yangfei 已提交
187 188
  //  th3.join();
  th1.join();
L
liuruilong 已提交
189
  return 0;
Y
yangfei 已提交
190
}