paddle_api.h 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file defines PaddlePredictor, the api for lite. It supports multiple
 * hardware including ARM, X86, OpenCL, CUDA and so on.
 */

#ifndef PADDLE_LITE_API_H_  // NOLINT
#define PADDLE_LITE_API_H_
#include <memory>
#include <string>
#include <vector>
#include "paddle_place.h"  // NOLINT

namespace paddle {
namespace lite_api {

using shape_t = std::vector<int64_t>;
using lod_t = std::vector<std::vector<uint64_t>>;

enum class LiteModelType { kProtobuf = 0, kNaiveBuffer, UNK };

struct LITE_API Tensor {
  explicit Tensor(void* raw);
  explicit Tensor(const void* raw);

  void Resize(const shape_t& shape);

  /// Readonly data.
  template <typename T>
  const T* data() const;

  template <typename T>
46
  T* mutable_data(TargetType type = TargetType::kHost) const;
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

  /// Shape of the tensor.
  shape_t shape() const;

  // LoD of the tensor
  lod_t lod() const;

  // Set LoD of the tensor
  void SetLoD(const lod_t& lod);

 private:
  void* raw_tensor_;
};

/// The PaddlePredictor defines the basic interfaces for different kinds of
/// predictors.
class LITE_API PaddlePredictor {
 public:
  PaddlePredictor() = default;

  /// Get i-th input.
  virtual std::unique_ptr<Tensor> GetInput(int i) = 0;

  /// Get i-th output.
  virtual std::unique_ptr<const Tensor> GetOutput(int i) const = 0;

  virtual void Run() = 0;

75 76
  virtual std::string GetVersion() const = 0;

77 78 79 80 81 82 83 84
  // Get input names
  virtual std::vector<std::string> GetInputNames() = 0;
  // Get output names
  virtual std::vector<std::string> GetOutputNames() = 0;

  // Get Input by name
  virtual std::unique_ptr<Tensor> GetInputByName(const std::string& name) = 0;

Y
Yan Chunwei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  /// Get a readonly tensor, return null if no one called `name` exists.
  virtual std::unique_ptr<const Tensor> GetTensor(
      const std::string& name) const = 0;

  /// Persist the optimized model to disk. This API is only supported by
  /// CxxConfig, and the persisted model can be reused for MobileConfig.
  virtual void SaveOptimizedModel(
      const std::string& model_dir,
      LiteModelType model_type = LiteModelType::kProtobuf);

  virtual ~PaddlePredictor() = default;
};

/// Base class for all the configs.
class LITE_API ConfigBase {
  std::string model_dir_;
101 102
  int threads_{1};
  PowerMode mode_{LITE_POWER_NO_BIND};
Y
Yan Chunwei 已提交
103 104

 public:
105 106
  explicit ConfigBase(PowerMode mode = LITE_POWER_NO_BIND, int threads = 1);
  // set Model_dir
Y
Yan Chunwei 已提交
107 108
  void set_model_dir(const std::string& x) { model_dir_ = x; }
  const std::string& model_dir() const { return model_dir_; }
109 110 111 112 113 114
  // set Power_mode
  void set_power_mode(PowerMode mode);
  PowerMode power_mode() const { return mode_; }
  // set Thread
  void set_threads(int threads);
  int threads() const { return threads_; }
Y
Yan Chunwei 已提交
115 116 117 118 119
};

/// CxxConfig is the config for the Full feature predictor.
class LITE_API CxxConfig : public ConfigBase {
  std::vector<Place> valid_places_;
120 121
  std::string model_file_;
  std::string param_file_;
122
  bool model_from_memory_{false};
Y
Yan Chunwei 已提交
123 124 125

 public:
  void set_valid_places(const std::vector<Place>& x) { valid_places_ = x; }
126 127
  void set_model_file(const std::string& path) { model_file_ = path; }
  void set_param_file(const std::string& path) { param_file_ = path; }
128 129 130 131 132 133 134 135
  void set_model_buffer(const char* model_buffer,
                        size_t model_buffer_size,
                        const char* param_buffer,
                        size_t param_buffer_size) {
    model_file_ = std::string(model_buffer, model_buffer + model_buffer_size);
    param_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
    model_from_memory_ = true;
  }
Y
Yan Chunwei 已提交
136 137

  const std::vector<Place>& valid_places() const { return valid_places_; }
138 139
  std::string model_file() const { return model_file_; }
  std::string param_file() const { return param_file_; }
140
  bool model_from_memory() const { return model_from_memory_; }
Y
Yan Chunwei 已提交
141 142 143 144
};

/// MobileConfig is the config for the light weight predictor, it will skip
/// IR optimization or other unnecessary stages.
145
class LITE_API MobileConfig : public ConfigBase {
146 147 148
  std::string model_buffer_;
  std::string param_buffer_;
  bool model_from_memory_{false};
149 150

 public:
151 152 153 154 155 156 157 158
  void set_model_buffer(const char* model_buffer,
                        size_t model_buffer_size,
                        const char* param_buffer,
                        size_t param_buffer_size) {
    model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
    param_buffer_ = std::string(param_buffer, param_buffer + param_buffer_size);
    model_from_memory_ = true;
  }
159

160 161 162
  bool model_from_memory() const { return model_from_memory_; }
  const std::string& model_buffer() const { return model_buffer_; }
  const std::string& param_buffer() const { return param_buffer_; }
163
};
Y
Yan Chunwei 已提交
164 165 166 167 168 169 170 171

template <typename ConfigT>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&);

}  // namespace lite_api
}  // namespace paddle

#endif  // NOLINT