test_int8_conv_op.cpp 10.7 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"

namespace paddle_mobile {

// Reference convolution for checking results:
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
            const framework::AttributeMap &attrs, framework::Tensor *output) {
  framework::AttrReader attr_reader(attrs);
  std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
  std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
  std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
  int groups = attr_reader.Get<int>("groups");
  int kernel_h = filter->dims()[2];
  int kernel_w = filter->dims()[3];
  int pad_h = paddings[0];
  int pad_w = paddings[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  auto in_shape = input->dims();
  auto out_shape = output->dims();

  const bool has_depth = 0;
  int kernel_d, pad_d, stride_d, dilation_d;
  if (has_depth) {
    kernel_d = kernel_h;
    stride_d = stride_h;
    pad_d = pad_h;
    dilation_d = dilation_h;
  } else {
    kernel_d = stride_d = dilation_d = 1;
    pad_d = 0;
  }
  // Groups
  int o_g = out_shape[1] / groups;
  int k_g = in_shape[1] / groups;
  int o_head, k_head;
  // Convolution
  vector<int> weight_offset(4 + has_depth);
  vector<int> in_offset(4 + has_depth);
  vector<int> out_offset(4 + has_depth);
  auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
    framework::DDim shape = input->dims();
    size_t count = 0;
    for (int i = 0; i < indics.size(); ++i) {
      count *= shape[i];
      count += indics[i];
    }
    return count;
  };

  const Itype *in_data = input->data<Itype>();
  const Itype *w_data = filter->data<Itype>();
  Otype *out_data = output->mutable_data<Otype>();
  memset(out_data, 0, output->numel() * sizeof(Otype));
  for (int n = 0; n < out_shape[0]; n++) {
    for (int g = 0; g < groups; g++) {
      o_head = o_g * g;
      k_head = k_g * g;
      for (int o = 0; o < o_g; o++) {
        for (int k = 0; k < k_g; k++) {
          for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
            for (int y = 0; y < out_shape[2 + has_depth]; y++) {
              for (int x = 0; x < out_shape[3 + has_depth]; x++) {
                for (int r = 0; r < kernel_d; r++) {
                  for (int p = 0; p < kernel_h; p++) {
                    for (int q = 0; q < kernel_w; q++) {
                      int in_z = z * stride_d - pad_d + r * dilation_d;
                      int in_y = y * stride_h - pad_h + p * dilation_h;
                      int in_x = x * stride_w - pad_w + q * dilation_w;
                      if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
                          in_y >= 0 && in_y < in_shape[2 + has_depth] &&
                          in_x >= 0 && in_x < in_shape[3 + has_depth]) {
                        weight_offset[0] = o + o_head;
                        weight_offset[1] = k;
                        if (has_depth) {
                          weight_offset[2] = r;
                        }
                        weight_offset[2 + has_depth] = p;
                        weight_offset[3 + has_depth] = q;
                        in_offset[0] = n;
                        in_offset[1] = k + k_head;
                        if (has_depth) {
                          in_offset[2] = in_z;
                        }
                        in_offset[2 + has_depth] = in_y;
                        in_offset[3 + has_depth] = in_x;
                        out_offset[0] = n;
                        out_offset[1] = o + o_head;
                        if (has_depth) {
                          out_offset[2] = z;
                        }
                        out_offset[2 + has_depth] = y;
                        out_offset[3 + has_depth] = x;

                        out_data[offset(output, out_offset)] +=
                            in_data[offset(input, in_offset)] *
                            w_data[offset(filter, weight_offset)];
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
int TestConvOp() {
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  int dilation_h = 1;
  int dilation_w = 1;

H
hjchen2 已提交
142
  int batch_size = 1;
143 144 145 146
  int input_c = 3;
  int input_h = 100;
  int input_w = 100;
  int output_c = 10;
H
hjchen2 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});
  framework::DDim filter_shape =
      framework::make_ddim({output_c, input_c, kernel_h, kernel_w});

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["Input"] = std::vector<std::string>({"input"});
  inputs["Filter"] = std::vector<std::string>({"filter"});
  outputs["Output"] = std::vector<std::string>({"output"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
161
  SetupTensor<Itype>(input, input_shape, -20, 20);
H
hjchen2 已提交
162 163 164

  auto filter_var = scope.get()->Var("filter");
  auto filter = filter_var->template GetMutable<framework::LoDTensor>();
165
  SetupTensor<Itype>(filter, filter_shape, -20, 20);
H
hjchen2 已提交
166 167 168 169 170 171 172 173 174 175 176

  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["dilations"].Set<vector<int>>(
      std::vector<int>({dilation_h, dilation_w}));
  attrs["groups"].Set<int>(1);

  auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
                                               scope);
177
  //  struct timespec ts_begin, ts_end;
H
hjchen2 已提交
178
  op->InferShape();
179
  // warmup
180 181 182
  //  op->Run();
  //  clock_gettime(CLOCK_MONOTONIC, &ts_begin);
  //  for (int i = 0; i < 10; ++i) {
H
hjchen2 已提交
183
  op->Run();
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  //  }
  //  clock_gettime(CLOCK_MONOTONIC, &ts_end);
  //  uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
  //                     (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
  //  LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";

  int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
  int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
  int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
  int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
  auto output_shape = framework::make_ddim(
      std::vector<int>({batch_size, output_c, output_h, output_w}));
  framework::Tensor output_cmp;
  output_cmp.mutable_data<Otype>(output_shape);
  conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);

  // compare results
  auto output = output_var->template Get<framework::LoDTensor>();
  const Otype *output_data = output->data<Otype>();
  Otype *output_cmp_data = output_cmp.data<Otype>();
  for (int i = 0; i < output->numel(); ++i) {
    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
                          "output[%d] = %d, output_cmp[%d] = %d", i,
                          output_data[i], i, output_cmp_data[i]);
H
hjchen2 已提交
208 209 210 211 212 213 214
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

215
int main() {
216 217 218 219
  // kernel = 7, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 2>();

220 221 222 223
  // kernel = 7, pad = 1, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 2>();

224 225 226 227
  // kernel = 7, pad = 3, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 2>();

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  // kernel = 7, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 1>();

  // kernel = 7, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 1>();

  // kernel = 7, pad = 3, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 1>();

  // kernel = 7, pad = 5, stride = 3
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=5, stride=3";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 5, 3>();

  // kernel = 7, pad = 3, stride = 4
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=4";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 4>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

249
  // kernel = 3, pad = 0, stride = 1
250
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=0, stride=1";
251
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>();
252 253 254 255 256
  // kernel = 3, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
  paddle_mobile::TestConvOp<float, float, 3, 0, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

257
  // kernel = 3, pad = 1, stride = 1
258
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=1, stride=1";
259
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>();
260 261 262 263 264
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
  paddle_mobile::TestConvOp<float, float, 3, 1, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

265
  // kernel = 5, pad = 0, stride = 1
266
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
267
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>();
268 269 270 271 272
  // kernel = 5, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 0, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

273
  // kernel = 5, pad = 2, stride = 1
274
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
275
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>();
276 277 278
  // kernel = 5, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 2, 1>();
279
}