test_mul_op.cpp 5.8 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

E
eclipsess 已提交
15 16
#pragma once
#include "../test_include.h"
E
eclipsess 已提交
17
#include "operators/mul_op.h"
E
eclipsess 已提交
18 19

namespace paddle_mobile {
E
eclipsess 已提交
20
namespace framework {
E
eclipsess 已提交
21

22 23 24
template <typename Dtype>
class TestMulOp {
 public:
25 26 27 28 29
  explicit TestMulOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
E
eclipsess 已提交
30
    }
E
eclipsess 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "mul" && op->Input("X")[0] == "pool2d_0.tmp_0") {
          DLOG << " mul attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Input Y is : " << op->Input("Y")[0];
          DLOG << " Output Out is : " << op->Output("Out")[0];
          DLOG << "x_num_col_dims : "
               << op->GetAttrMap().at("x_num_col_dims").Get<int>();
          DLOG << "y_num_col_dims : "
               << op->GetAttrMap().at("y_num_col_dims").Get<int>();

          std::shared_ptr<operators::MulOp<Dtype, float>> mul =
              std::make_shared<operators::MulOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(mul);
E
eclipsess 已提交
58
        }
59 60 61 62
      }
    }
  }

63
  std::shared_ptr<Tensor> predict_mul(const Tensor &t1, const Tensor &t2) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    // feed
    auto scope = program_.scope;
    Variable *x_feed_value = scope->Var("pool2d_0.tmp_0");
    auto tensor_x = x_feed_value->GetMutable<Tensor>();
    tensor_x->ShareDataWith(t1);

    Variable *y_feed_value = scope->Var("fc_0.w_0");
    auto tensor_y = y_feed_value->GetMutable<Tensor>();
    tensor_y->ShareDataWith(t2);

    Variable *con_output = scope->Var("fc_0.tmp_0");
    auto *output_tensor = con_output->GetMutable<Tensor>();
    output_tensor->mutable_data<float>({3, 3});
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict_mul(t1, t2, 0);
    return out_tensor;
  }

87
 private:
88 89 90 91 92 93 94 95 96 97 98 99 100 101
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict_mul(const Tensor &t1, const Tensor &t2, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
E
eclipsess 已提交
102
    }
103
  }
E
eclipsess 已提交
104
};
E
eclipsess 已提交
105

E
eclipsess 已提交
106
template class TestMulOp<CPU>;
107 108
}  // namespace framework
}  // namespace paddle_mobile
E
eclipsess 已提交
109

E
eclipsess 已提交
110
int main() {
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  DLOG << "----------**********----------";
  DLOG << "begin to run MulOp Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  auto program =
      loader.Load(std::string("../../test/models/"
                              "image_classification_resnet.inference.model"));

  /// input x (3,2,1,1)
  paddle_mobile::framework::Tensor inputx;
  SetupTensor<float>(&inputx, {3, 2, 1, 1}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx_ptr = inputx.data<float>();

  /// input y (2,3)
  paddle_mobile::framework::Tensor inputy;
  SetupTensor<float>(&inputy, {2, 3}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputy_ptr = inputy.data<float>();

  paddle_mobile::framework::TestMulOp<paddle_mobile::CPU> testMulOp(program);

  auto output_mul = testMulOp.predict_mul(inputx, inputy);
  auto *output_mul_ptr = output_mul->data<float>();

  auto dimx_1 = inputx.numel() / inputx.dims()[0];
  DLOG << " inputx : ";
  for (int i = 0; i < inputx.dims()[0]; ++i) {
    for (int j = 0; j < dimx_1; ++j) {
      DLOGF("%f ", inputx_ptr[i * dimx_1 + j]);
E
eclipsess 已提交
140
    }
141 142 143 144 145 146 147 148
    DLOGF("\n");
  }

  auto dimy_1 = inputy.numel() / inputy.dims()[0];
  DLOG << " inputy : ";
  for (int i = 0; i < inputy.dims()[0]; ++i) {
    for (int j = 0; j < dimy_1; ++j) {
      DLOGF("%f ", inputy_ptr[i * dimx_1 + j]);
E
eclipsess 已提交
149
    }
150 151 152 153 154 155 156 157
    DLOGF("\n");
  }

  auto dim_output_1 = output_mul->numel() / output_mul->dims()[0];
  DLOG << " output : ";
  for (int i = 0; i < output_mul->dims()[0]; ++i) {
    for (int j = 0; j < dim_output_1; ++j) {
      DLOGF("%f ", output_mul_ptr[i * dimy_1 + j]);
E
eclipsess 已提交
158
    }
159 160
    DLOGF("\n");
  }
E
eclipsess 已提交
161

162 163 164
  /// output (3,3)
  DLOG << "output memory size : " << output_mul->memory_size();
  DLOG << "output numel : " << output_mul->numel();
E
eclipsess 已提交
165

166 167 168
  DLOG << inputx_ptr[0] << " x " << inputy_ptr[0] << " + " << inputx_ptr[1]
       << " x " << inputy_ptr[0 + 3] << " = " << output_mul_ptr[0];
  return 0;
E
eclipsess 已提交
169
}