subgraph_compute.cc 5.7 KB
Newer Older
B
baolei.an 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/bm/subgraph_compute.h"
#include <sys/time.h>
#include <time.h>
#include <string>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/paddle_use_bridges.h"
#include "lite/kernels/bm/bridges/utility.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace bm {

C
cen.li 已提交
31 32 33 34 35
int SubgraphEngine::BuildDeviceProgram() {
  int status = 0;
  subgraph::bm::Graph graph;
  const auto& bridges = subgraph::Registry::Instance();
  graph.CreateCompilerHandle();
B
baolei.an 已提交
36
  auto& ctx = this->ctx_->template As<BMContext>();
C
cen.li 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

  for (auto& inst : origin_program_) {
    auto op = inst.op();
    CHECK(op);
    op->CheckShape();
    op->InferShape();
    std::string op_type = op->op_info()->Type();
    if (!bridges.Exists("BM", op_type)) {
      return subgraph::FAILED;
    }
    auto kernel = inst.kernel();
    status |= bridges.Select("BM", op_type)(reinterpret_cast<void*>(&graph),
                                             const_cast<OpLite*>(op),
                                             const_cast<KernelBase*>(kernel));
    if (subgraph::CHECK_FAILED(status)) {
      return subgraph::FAILED;
B
baolei.an 已提交
53
    }
C
cen.li 已提交
54 55 56 57
  }

  std::string net_name = "paddle_bitmain";
  __bmcompile_opt(graph.GetCompilerHandle(), const_cast<char*>(net_name.c_str()), 2);
B
baolei.an 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  void* bmodel_data = nullptr;
  unsigned int data_size = 0;
  bm_hd_ = static_cast<bm_handle_t>(ctx.GetHandle());
  finish_bmcompiler_data(graph.GetCompilerHandle(), &bmodel_data, &data_size);
  bmrt_hd_ = bmrt_create(bm_hd_);
  if (false == bmrt_load_bmodel_data(bmrt_hd_, bmodel_data, data_size)) {
    return subgraph::FAILED;
  }
  
  bmrt_get_network_names(bmrt_hd_, &net_names_);
  net_info_ = bmrt_get_network_info(bmrt_hd_, net_names_[0]);
  auto &stage = net_info_->stages[0];

  // input
  origin_idims_.resize(input_names_.size());
  origin_itensors_.resize(input_names_.size());
  device_inputs_.resize(input_names_.size());    
  for (size_t i = 0; i < input_names_.size(); i++) {
    origin_itensors_[i] = scope_->FindMutableTensor(input_names_[i]);
    CHECK(origin_itensors_[i]);
    origin_idims_[i] = origin_itensors_[i]->dims();    
    bm_device_mem_t* p_mem = static_cast<bm_device_mem_t*>(malloc(sizeof(bm_device_mem_t)));
    CHECK(p_mem != nullptr);
    CHECK(bm_malloc_device_byte(bm_hd_, p_mem, origin_itensors_[i]->memory_size()) == BM_SUCCESS);
    bmrt_tensor_with_device(&device_inputs_[i], *p_mem,
                    net_info_->input_dtypes[i],
                    stage.input_shapes[i]);
  }
  
  // output  
  origin_odims_.resize(output_names_.size());
  origin_otensors_.resize(output_names_.size());
  device_outputs_.resize(output_names_.size());
  
  for (size_t i = 0; i < output_names_.size(); i++) {
    origin_otensors_[i] = scope_->FindMutableTensor(output_names_[i]);
    CHECK(origin_otensors_[i]);
    origin_odims_[i] = origin_otensors_[i]->dims();
    output_map_.insert(std::pair<std::string, int>(output_names_[i], i));
    origin_otensors_[i]->mutable_data<float>();
  }
  
  for (size_t i = 0; i < output_names_.size(); i++) {
    int mapping_index = output_map_.at(net_info_->output_names[i]);
    bm_device_mem_t* p_mem = static_cast<bm_device_mem_t*>(malloc(sizeof(bm_device_mem_t)));
    CHECK(p_mem != nullptr);
    CHECK(bm_malloc_device_byte(bm_hd_, p_mem, origin_otensors_[mapping_index]->memory_size()) == BM_SUCCESS);
    bmrt_tensor_with_device(&device_outputs_[i], *p_mem,
                    net_info_->output_dtypes[i],
                    stage.output_shapes[i]);
  }

C
cen.li 已提交
111 112 113 114
  return status;
}

int SubgraphEngine::LaunchDeviceProgram() {
B
baolei.an 已提交
115 116 117 118 119 120 121 122 123 124
  for (size_t i = 0; i < device_inputs_.size(); i++) {
    bm_memcpy_s2d(bm_hd_, device_inputs_[i].device_mem, const_cast<void*>(origin_itensors_[i]->raw_data()));
  }
  
  bmrt_launch_tensor_ex(bmrt_hd_, net_names_[0], static_cast<const bm_tensor_t*>(&device_inputs_[0]),
                                    net_info_->input_num, static_cast<bm_tensor_t*>(&device_outputs_[0]), net_info_->output_num, true, false);
  bm_thread_sync(bm_hd_);  
  for (size_t i = 0; i < device_outputs_.size(); i++) {
    bm_memcpy_d2s(bm_hd_, const_cast<void*>(origin_otensors_[i]->raw_data()), device_outputs_[i].device_mem);
  }
C
cen.li 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137
  return 0;
}

void SubgraphCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  engine_.reset(new SubgraphEngine(ctx_.get(),
                                   param.sub_block_idx,
                                   param.sub_block_desc,
                                   param.input_data_names,
                                   param.output_data_names,
                                   param.scope));
  CHECK(engine_);
  engine_->Build();
B
baolei.an 已提交
138 139 140
}

void SubgraphCompute::Run() {
C
cen.li 已提交
141 142
  CHECK(engine_);
  engine_->Launch();
B
baolei.an 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

}  // namespace bm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(subgraph,
                     kBM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::bm::SubgraphCompute,
                     def)
    .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();