test_mobilenetv1_int8_apu.cc 5.0 KB
Newer Older
H
hong19860320 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
using namespace paddle::lite_api;  // NOLINT

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

inline int64_t ShapeProduction(std::vector<int64_t> shape) {
  int64_t s = 1;
  for (int64_t dim : shape) {
    s *= dim;
  }
  return s;
}

int main(int argc, char** argv) {
  if (argc < 2) {
    std::cerr << "[ERROR] usage: ./" << argv[0]
              << " model_dir [thread_num] [warmup_times] [repeat_times] "
                 "[input_data_path] [output_data_path]"
              << std::endl;
    return -1;
  }
  std::string model_dir = argv[1];
  int thread_num = 1;
  if (argc > 2) {
    thread_num = atoi(argv[2]);
  }
  int warmup_times = 5;
  if (argc > 3) {
    warmup_times = atoi(argv[3]);
  }
  int repeat_times = 10;
  if (argc > 4) {
    repeat_times = atoi(argv[4]);
  }
  std::string input_data_path;
  if (argc > 5) {
    input_data_path = argv[5];
  }
  std::string output_data_path;
  if (argc > 6) {
    output_data_path = argv[6];
  }
  paddle::lite_api::CxxConfig config;
  config.set_model_dir(model_dir);
  config.set_threads(thread_num);
  config.set_power_mode(paddle::lite_api::LITE_POWER_HIGH);
  config.set_valid_places(
      {paddle::lite_api::Place{
           TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW)},
       paddle::lite_api::Place{
           TARGET(kARM), PRECISION(kInt8), DATALAYOUT(kNCHW)},
       paddle::lite_api::Place{
           TARGET(kAPU), PRECISION(kInt8), DATALAYOUT(kNCHW)}});
  auto predictor = paddle::lite_api::CreatePaddlePredictor(config);

  std::unique_ptr<paddle::lite_api::Tensor> input_tensor(
      std::move(predictor->GetInput(0)));
  input_tensor->Resize({1, 3, 224, 224});
  auto input_data = input_tensor->mutable_data<float>();
  auto input_size = ShapeProduction(input_tensor->shape());

  // test loop
  int total_imgs = 500;
  float test_num = 0;
  float top1_num = 0;
  float top5_num = 0;
  int output_len = 1000;
  std::vector<int> index(1000);
  bool debug = true;  // false;
  int show_step = 500;
  for (int i = 0; i < total_imgs; i++) {
    // set input
    std::string filename = input_data_path + "/" + std::to_string(i);
    std::ifstream fs(filename, std::ifstream::binary);
    if (!fs.is_open()) {
      std::cout << "open input file fail.";
    }
    auto input_data_tmp = input_data;
    for (int i = 0; i < input_size; ++i) {
      fs.read(reinterpret_cast<char*>(input_data_tmp), sizeof(*input_data_tmp));
      input_data_tmp++;
    }
    int label = 0;
    fs.read(reinterpret_cast<char*>(&label), sizeof(label));
    fs.close();

    if (debug && i % show_step == 0) {
      std::cout << "input data:" << std::endl;
      std::cout << input_data[0] << " " << input_data[10] << " "
                << input_data[input_size - 1] << std::endl;
      std::cout << "label:" << label << std::endl;
    }

    // run
    predictor->Run();
    auto output0 = predictor->GetOutput(0);
    auto output0_data = output0->data<float>();

    // get output
    std::iota(index.begin(), index.end(), 0);
    sort(index.begin(), index.end(), [output0_data](size_t i1, size_t i2) {
      return output0_data[i1] > output0_data[i2];
    });
    test_num++;
    if (label == index[0]) {
      top1_num++;
    }
    for (int i = 0; i < 5; i++) {
      if (label == index[i]) {
        top5_num++;
      }
    }

    if (debug && i % show_step == 0) {
      std::cout << index[0] << " " << index[1] << " " << index[2] << " "
                << index[3] << " " << index[4] << std::endl;
      std::cout << output0_data[index[0]] << " " << output0_data[index[1]]
                << " " << output0_data[index[2]] << " "
                << output0_data[index[3]] << " " << output0_data[index[4]]
                << std::endl;
      std::cout << output0_data[630] << std::endl;
    }
    if (i % show_step == 0) {
      std::cout << "step " << i << "; top1 acc:" << top1_num / test_num
                << "; top5 acc:" << top5_num / test_num << std::endl;
    }
  }
  std::cout << "final result:" << std::endl;
  std::cout << "top1 acc:" << top1_num / test_num << std::endl;
  std::cout << "top5 acc:" << top5_num / test_num << std::endl;
  return 0;
}