conv_add_kernel.cpp 4.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

W
wangliu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
void expand_bias(Tensor &bias, int axis, const DDim &dDim) {
  auto bias_ptr = bias.data<float>();
  const DDim bias_ddim = bias.dims();
  PADDLE_MOBILE_ENFORCE(bias.dims().size() == 1,
                        "the bias tensor's dims size != 1")
  DDim outer_ddim = paddle_mobile::framework::slice_ddim(dDim, 0, axis + 1);
  DDim inner_ddim =
      paddle_mobile::framework::slice_ddim(dDim, axis + 1, dDim.size());
  int outer_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);
  bias.Resize(dDim);
  auto new_ptr = bias.mutable_data<float>();
  int axis_size = dDim[axis];
  for (int i = 0; i < outer_size; ++i) {
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (int j = 0; j < inner_size; ++j) {
      new_ptr[i * inner_size + j] = v_bias;
    }
  }
}

W
wangliu 已提交
42
template <>
W
wangliu 已提交
43 44
void ConvAddKernel<CPU, float>::Compute(
    const FushionConvAddParam &param) const {
W
wangliu 已提交
45 46
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
W
wangliu 已提交
47 48
  Tensor bias = *param.Bias();
  int axis = param.Axis();
W
wangliu 已提交
49
  Tensor *output = param.Output();
W
wangliu 已提交
50 51
  expand_bias(bias, axis, output->dims());
  output->ShareDataWith(bias);
W
wangliu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
W
wangliu 已提交
72
      framework::flatten_to_2d(col_shape, data_dim + 1);
W
wangliu 已提交
73 74 75 76 77 78 79 80 81 82 83

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
W
wangliu 已提交
84
      input->dims(), 1, static_cast<int>(input->dims().size()));
W
wangliu 已提交
85 86 87 88 89

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
W
wangliu 已提交
90 91
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
W
wangliu 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
W
wangliu 已提交
127
                          static_cast<float>(1));
W
wangliu 已提交
128 129 130 131 132 133 134 135 136
    }
  }
}
template class ConvAddKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif