reshape2_kernel.cpp 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef RESHAPE2_OP

#include "operators/kernel/reshape2_kernel.h"
#include "framework/ddim.h"

namespace paddle_mobile {
namespace operators {

template <>
bool Reshape2Kernel<FPGA, float>::Init(Reshape2Param<FPGA> *param) {
  auto input = const_cast<LoDTensor *>(param->InputX());
  auto output = param->Out();
  auto shape = param->Shape();
28
  output->scale[0] = input->scale[0];
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

  auto num_in = framework::product(input->dims());
  auto num_shape = framework::product(framework::make_ddim(shape));
  PADDLE_MOBILE_ENFORCE(num_shape != 0, "0 index is not supported");

  for (int i = 0; i < shape.size(); i++) {
    if (shape[i] == -1) {
      shape[i] = static_cast<int>(-num_in / num_shape);
      break;
    }
  }
  output->Resize(framework::make_ddim(shape));
  output->set_type(input->type());
  fpga::format_ofm(output);
  DLOG << "input: " << input;
  DLOG << "output: " << output;

  return true;
}

void reshape(LoDTensor *input, LoDTensor *output) {
  // Subscript r means after reshape

52 53
  auto input_ptr = input->data<int8_t>();
  auto output_ptr = output->data<int8_t>();
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  output->scale[0] = input->scale[0];
  output->scale[1] = input->scale[1];

  auto C = static_cast<int>(input->dims()[1]);
  auto H = static_cast<int>(input->dims()[2]);
  auto W = static_cast<int>(input->dims()[3]);
  auto Cr = static_cast<int>(output->dims()[1]);
  auto Hr = static_cast<int>(output->dims()[2]);
  auto Wr = static_cast<int>(output->dims()[3]);
  PADDLE_MOBILE_ENFORCE(C * H * W == Cr * Hr * Wr, "Dims don't match");
  auto WC = W * C;
  auto WC_align = fpga::align_to_x(WC, IMAGE_ALIGNMENT);
  auto HW = H * W;
  auto WCr = Wr * Cr;
  auto WCr_align = fpga::align_to_x(WCr, IMAGE_ALIGNMENT);
  auto HWr = Hr * Wr;

71
  fpga::fpga_invalidate(input_ptr, H * WC_align * sizeof(int8_t));
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

  int offset_align = 0;
  int offset_r = 0, offset_align_r = 0;
  int cr = 0, hr = 0, wr = 0;

  for (int h = 0; h < H; h++) {
    int offset0 = h * WC_align;
    for (int w = 0; w < W; w++) {
      int offset1 = w * C + offset0;
      for (int c = 0; c < C; c++) {
        offset_align = offset1 + c;
        offset_r = c * HW + h * W + w;
        cr = offset_r / HWr;
        hr = offset_r % HWr / Wr;
        wr = offset_r % Wr;
        offset_align_r = hr * WCr_align + wr * Cr + cr;
        output_ptr[offset_align_r] = input_ptr[offset_align];
      }
    }
  }

93
  fpga::fpga_flush(output_ptr, Hr * WCr_align * sizeof(int8_t));
94 95
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static inline bool reshape2_judge(const framework::DDim input_dims,const framework::DDim output_dims){
	int input_dims_size = input_dims.size();
	int output_dims_size = output_dims.size();
	bool dims_flag2 = true;
	auto temp_dims = input_dims_size > output_dims_size ? input_dims : output_dims;
	int  short_dims = input_dims_size > output_dims_size ? output_dims_size : input_dims_size;
	for(int i = 0; i < temp_dims.size(); ++i){
	   if(i < short_dims){
		   if(input_dims[i] != output_dims[i]){
				 dims_flag2 = false;
				 break;
		   }
	   }
	   else{
		   if(temp_dims[i] != 1){
			   dims_flag2 = false;
			   break;
		   }
	   }
	}
	return dims_flag2;
 }
 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
template <>
void Reshape2Kernel<FPGA, float>::Compute(const Reshape2Param<FPGA> &param) {
  auto input = const_cast<LoDTensor *>(param.InputX());
  auto output = param.Out();
  auto shape = param.Shape();

  auto num_in = framework::product(input->dims());
  auto num_shape = framework::product(framework::make_ddim(shape));
  PADDLE_MOBILE_ENFORCE(num_shape != 0, "0 index is not supported");

  for (int i = 0; i < shape.size(); i++) {
    if (shape[i] == -1) {
      shape[i] = static_cast<int>(-num_in / num_shape);
      break;
    }
  }
  output->Resize(framework::make_ddim(shape));
136 137 138 139 140 141 142 143 144 145 146
  auto input_dims = input->dims();
  auto output_dims = output->dims();

  bool dims_flags = input_dims  == output_dims;
  bool dims_flag2 = true;

  if(!dims_flags){
	dims_flag2 = reshape2_judge(input_dims, output_dims);
  }
  
  if (dims_flags || dims_flag2) {
147 148 149 150
    DLOG << "No need to reshape";
    output->ShareDataWith(*input);
    framework::LoD lod = input->lod();
    output->set_lod(lod);
151
    output->scale[0] = input->scale[0];
152 153 154 155 156 157 158 159 160 161 162
    return;
  }

  reshape(input, output);
  //
}

}  // namespace operators
}  // namespace paddle_mobile

#endif