pool_compute_test.cc 2.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/x86/pool_compute.h"
#include <gtest/gtest.h>
#include <iostream>
18 19
#include <memory>
#include <utility>
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

TEST(pool_x86, retrive_op) {
  auto pool2d =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
          "pool2d");
  ASSERT_FALSE(pool2d.empty());
  ASSERT_TRUE(pool2d.front());
}

TEST(pool2d_x86, init) {
  PoolCompute<float> pool2d;
  ASSERT_EQ(pool2d.precision(), PRECISION(kFloat));
  ASSERT_EQ(pool2d.target(), TARGET(kX86));
}

TEST(pool2d_x86, run_test) {
  lite::Tensor x, out;
  constexpr int batch_size = 1;
  std::vector<int64_t> x_shape{batch_size, 3, 4, 4};
  x.Resize(lite::DDim(x_shape));
  std::vector<int64_t> out_shape{batch_size, 3, 2, 2};
  out.Resize(lite::DDim(out_shape));

  auto x_data = x.mutable_data<float>();
  auto out_data = out.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); i++) {
    x_data[i] = static_cast<float>(i);
  }

  PoolCompute<float> pool2d;
  operators::PoolParam param;

  param.x = &x;
  param.output = &out;
  param.strides = {2, 2};
63 64
  std::vector<int> paddings = {0, 0, 0, 0};
  param.paddings = std::make_shared<std::vector<int>>(paddings);
Y
Yan Chunwei 已提交
65 66
  param.ksize = {2, 2};
  param.pooling_type = "max";
67 68 69
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<X86Context>();
  pool2d.SetContext(std::move(ctx));
Y
Yan Chunwei 已提交
70 71 72 73
  pool2d.SetParam(param);
  pool2d.Run();

  LOG(INFO) << "output: ";
74 75
  float ref_result[12] = {
      5., 7., 13., 15., 21., 23., 29., 31., 37., 39., 45., 47.};
Y
Yan Chunwei 已提交
76 77
  for (int i = 0; i < out.dims().production(); i++) {
    LOG(INFO) << out_data[i];
78
    EXPECT_NEAR(out_data[i], ref_result[i], 1e-5);
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(pool2d, kX86, kFloat, kNCHW, def);