pool_compute_test.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/pool_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <string>
#include <utility>
#include <vector>

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

using Tensor = lite::Tensor;
using DDim = lite::DDim;

30 31 32 33 34 35
static int PoolOutputSize(int input_size,
                          int filter_size,
                          int pad_left,
                          int pad_right,
                          int stride,
                          bool ceil_mode) {
36 37
  int output_size;
  if (!ceil_mode) {
38 39
    output_size =
        (input_size - filter_size + pad_left + pad_right) / stride + 1;
40 41
  } else {
    output_size =
42 43 44
        (input_size - filter_size + pad_left + pad_right + stride - 1) /
            stride +
        1;
45 46 47 48 49 50 51 52 53
  }
  return output_size;
}

static std::vector<int64_t> compute_output_shape(operators::PoolParam* param_) {
  const auto x_dims = param_->x->dims();
  std::vector<int>& ksize = param_->ksize;
  if (param_->global_pooling) {
    ksize.resize(static_cast<size_t>(x_dims.size()) - 2);
54
    auto paddings = *param_->paddings;
55
    for (size_t i = 0; i < ksize.size(); ++i) {
56 57
      paddings[2 * i] = 0;
      paddings[2 * i + 1] = 0;
58 59 60 61 62 63 64 65 66 67 68 69
      ksize[i] = static_cast<int>(x_dims[i + 2]);
    }
  }

  std::vector<int64_t> output_shape({x_dims[0], x_dims[1]});
  if (param_->adaptive) {
    output_shape.insert(
        output_shape.end(), param_->ksize.begin(), param_->ksize.end());
  } else {
    for (size_t i = 0; i < param_->ksize.size(); ++i) {
      output_shape.push_back(PoolOutputSize(x_dims[i + 2],
                                            param_->ksize[i],
70 71
                                            paddings[2 * i],
                                            paddings[2 * i + 1],
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                                            param_->strides[i],
                                            param_->ceil_mode));
    }
  }
  return output_shape;
}

static void pool_compute_ref(const operators::PoolParam& param) {
  auto& in_dims = param.x->dims();
  auto& out_dims = param.output->dims();

  const float* src_ptr = param.x->data<const float>();
  float* dst_ptr = param.output->mutable_data<float>();

  std::vector<int> ksize = param.ksize;
  std::vector<int> strides = param.strides;
88
  std::vector<int> paddings = *param.paddings;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

  std::string pooling_type = param.pooling_type;
  bool global_pooling = param.global_pooling;
  bool exclusive = param.exclusive;
  std::string data_format = param.data_format;

  int in_n = in_dims[0];
  int in_c = in_dims[1];
  int in_h = in_dims[2];
  int in_w = in_dims[3];
  int size_in_n = in_c * in_h * in_w;
  int size_in_c = in_h * in_w;

  int out_h = out_dims[2];
  int out_w = out_dims[3];
  int size_out_n = in_c * out_h * out_w;
  int size_out_c = out_h * out_w;

  int window_h = ksize[0];
  int window_w = ksize[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int pad_h = paddings[0];
112
  int pad_w = paddings[2];
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

  if (global_pooling == true) {
    for (int n = 0; n < in_n; ++n) {
      for (int c = 0; c < in_c; ++c) {
        const float* src = src_ptr + n * size_in_n + c * size_in_c;
        float res = src[0];
        if (pooling_type == "max") {
          for (int i = 1; i < size_in_c; ++i) {
            float cur_val = src[i];
            res = cur_val > res ? cur_val : res;
          }
        } else if (pooling_type == "avg") {
          for (int i = 1; i < size_in_c; ++i) {
            float cur_val = src[i];
            res += cur_val;
          }
          res /= size_in_c;
        }
        dst_ptr[n * size_out_n + c] = res;
      }
    }
  } else {
    for (int n = 0; n < in_n; ++n) {
      for (int c = 0; c < in_c; ++c) {
        for (int h = 0; h < out_h; ++h) {
          int sh = h * stride_h;
          int eh = sh + window_h;
          sh = (sh - pad_h) < 0 ? 0 : sh - pad_h;
          eh = (eh - pad_h) > in_h ? in_h : eh - pad_h;
          for (int w = 0; w < out_w; ++w) {
            int sw = w * stride_w;
            int ew = sw + window_w;
            sw = (sw - pad_w) < 0 ? 0 : sw - pad_w;
            ew = (ew - pad_w) > in_w ? in_w : ew - pad_w;
            int pooling_size = (ew - sw) * (eh - sh);
            if (pooling_size == 0) {
              dst_ptr[n * size_out_n + c * size_out_c + h * out_w + w] = 0.f;
              continue;
            }
            float res = 0.f;
            for (int kh = sh; kh < eh; ++kh) {
              for (int kw = sw; kw < ew; ++kw) {
                int src_idx = n * size_in_n + c * size_in_c + kh * in_w + kw;
                if (kh == sh && kw == sw) {
                  res = src_ptr[src_idx];
                } else {
                  if (pooling_type == "max") {
                    res = res >= src_ptr[src_idx] ? res : src_ptr[src_idx];
                  }
                  if (pooling_type == "avg") {
                    res += src_ptr[src_idx];
                  }
                }
              }
            }
            if (pooling_type == "avg") {
              if (exclusive) {
                res /= pooling_size;
              } else {
                res /= window_h * window_w;
              }
            }
            dst_ptr[n * size_out_n + c * size_out_c + h * out_w + w] = res;
          }
        }
      }
    }
  }
}

TEST(pool_cuda, compute) {
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  auto& context = ctx->As<CUDAContext>();
  cudaStream_t stream;
  cudaStreamCreate(&stream);
  context.SetExecStream(stream);

  PoolCompute pool;
  operators::PoolParam param;
  pool.SetContext(std::move(ctx));

  lite::Tensor x;
  lite::Tensor x_cpu;
  lite::Tensor output;
  lite::Tensor output_cpu;
  lite::Tensor output_ref;
  for (auto pooling_type : {"max", "avg"}) {
    for (auto ceil_mode : {true, false}) {
      for (auto global_pooling : {true, false}) {
        for (auto exclusive : {true, false}) {
          for (auto ksize : {2, 3}) {
            for (auto stride : {1, 2}) {
              for (auto pad : {0, 1}) {
                for (auto n : {1, 2}) {
                  for (auto c : {1, 3}) {
                    for (auto h : {2, 3, 4, 11}) {
                      for (auto w : {2, 3, 4, 11}) {
                        VLOG(3) << "n:" << n << " c:" << c << " h:" << h
                                << " w:" << w << " ksize:" << ksize
                                << " stride:" << stride << " pad:" << pad
                                << " exclusive:" << exclusive
                                << " global_pooling:" << global_pooling
                                << " ceil_mode: " << ceil_mode
                                << " pooling_type:" << pooling_type;

                        // init x, output
                        x.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                        x_cpu.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                        auto* x_cpu_data = x_cpu.mutable_data<float>();
                        for (int i = 0; i < x_cpu.dims().production(); ++i) {
                          float sign = i % 3 == 0 ? -0.03 : 0.05f;
                          x_cpu_data[i] = sign * (i % 128);
                        }
                        x.Assign<float, DDim, TARGET(kCUDA)>(x_cpu_data,
                                                             x_cpu.dims());
                        // fill param
                        param.x = &x;
                        param.output = &output;
                        param.pooling_type = pooling_type;
                        if (global_pooling) {
                          param.ksize = {h, w};
                        } else {
                          param.ksize = {ksize, ksize};
                        }
                        param.global_pooling = global_pooling;
                        param.strides = {stride, stride};
239 240 241
                        std::vector<int> paddings = {pad, pad, pad, pad};
                        param.paddings =
                            std::make_shared<std::vector<int>>(paddings);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                        param.exclusive = exclusive;
                        param.ceil_mode = ceil_mode;
                        param.adaptive = false;
                        param.use_quantizer = false;

                        const std::vector<int64_t>& output_shape =
                            compute_output_shape(&param);
                        if (output_shape[2] * output_shape[3] == 0) continue;
                        output.Resize(DDim(output_shape));
                        output_ref.Resize(DDim(output_shape));
                        output_cpu.Resize(DDim(output_shape));
                        auto* output_data =
                            output.mutable_data<float>(TARGET(kCUDA));
                        auto* output_ref_data =
                            output_ref.mutable_data<float>();
                        auto* output_cpu_data =
                            output_cpu.mutable_data<float>();

                        // compute
                        pool.SetParam(param);
                        pool.Launch();

                        // compute ref
                        param.x = &x_cpu;
                        param.output = &output_ref;
                        pool_compute_ref(param);

                        cudaDeviceSynchronize();
                        CopySync<TARGET(kCUDA)>(output_cpu_data,
                                                output_data,
                                                sizeof(float) * output.numel(),
                                                IoDirection::DtoH);
                        // compare
                        for (int i = 0; i < output.dims().production(); i++) {
                          EXPECT_NEAR(
                              output_cpu_data[i], output_ref_data[i], 1e-4);
                        }
                        VLOG(3) << "compare pass";
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle