vol2col.cpp 8.0 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/vol2col.h"
Z
zhaojiaying01 已提交
16
#include <vector>
朔-望's avatar
朔-望 已提交
17 18

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
19 20 21 22 23 24 25 26 27 28
namespace operators {
namespace math {

using Tensor = paddle_mobile::framework::Tensor;
/*
 * vol = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
朔-望's avatar
朔-望 已提交
29 30 31
template <typename T>
class Vol2ColFunctor<CPU, T> {
 public:
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  void operator()(const Tensor &vol, const std::vector<int> &dilations,
                  const std::vector<int> &strides,
                  const std::vector<int> &paddings, Tensor *col) const {
    //    PADDLE_ENFORCE(vol.dims().size() == 4);
    //    PADDLE_ENFORCE(col->dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    //    PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
    //                       ((dilations[0] * (filter_depth - 1)
    //                       + 1))) /
    //                              strides[0] +
    //                          1,
    //                      output_depth,
    //                      "input_depth and output_depth are "
    //                      "mismatching.");
    //    PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
    //                       ((dilations[1] * (filter_height -
    //                       1) + 1))) /
    //                              strides[1] +
    //                          1,
    //                      output_height,
    //                      "input_height and output_height are
    //                      "
    //                      "mismatching.");
    //    PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
    //                       ((dilations[2] * (filter_width - 1)
    //                       + 1))) /
    //                              strides[2] +
    //                          1,
    //                      output_width,
    //                      "input_width and output_width are "
    //                      "mismatching.");

    const T *vol_data = vol.data<T>();
    T *col_data = col->data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int c_in = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * strides[0] - paddings[0] + d_offset * dilations[0];
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * strides[1] - paddings[1] + h_offset * dilations[1];
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * strides[2] - paddings[2] + w_offset * dilations[2];

            int col_idx =
                ((c * output_depth + d) * output_height + h) * output_width + w;
            int vol_idx =
                ((c_in * input_depth + d_pad) * input_height + h_pad) *
                    input_width +
                w_pad;
            col_data[col_idx] =
                (h_pad < 0 || h_pad >= input_height || w_pad < 0 ||
                 w_pad >= input_width || d_pad < 0 || d_pad >= input_depth)
                    ? static_cast<T>(0)
                    : vol_data[vol_idx];
          }
朔-望's avatar
朔-望 已提交
104
        }
105
      }
朔-望's avatar
朔-望 已提交
106
    }
107
  }
朔-望's avatar
朔-望 已提交
108 109 110 111 112 113 114 115
};

/*
 * vol = [input_channels,input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
朔-望's avatar
朔-望 已提交
116 117 118
template <typename T>
class Col2VolFunctor<CPU, T> {
 public:
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  void operator()(const Tensor &col, const std::vector<int> &dilations,
                  const std::vector<int> &strides,
                  const std::vector<int> &paddings, Tensor *vol) const {
    //    PADDLE_ENFORCE(vol->dims().size() == 4);
    //    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol->dims()[0];
    int input_depth = vol->dims()[1];
    int input_height = vol->dims()[2];
    int input_width = vol->dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    //    PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
    //                       ((dilations[0] * (filter_depth - 1)
    //                       + 1))) /
    //                              strides[0] +
    //                          1,
    //                      output_depth,
    //                      "input_depth and output_depth are "
    //                      "mismatching.");
    //    PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
    //                       ((dilations[1] * (filter_height -
    //                       1) + 1))) /
    //                              strides[1] +
    //                          1,
    //                      output_height,
    //                      "input_height and output_height are
    //                      "
    //                      "mismatching.");
    //    PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
    //                       ((dilations[2] * (filter_width - 1)
    //                       + 1))) /
    //                              strides[2] +
    //                          1,
    //                      output_width,
    //                      "input_width and output_width are "
    //                      "mismatching.");
    T *vol_data = vol->data<T>();
    const T *col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int cIm = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * strides[0] - paddings[0] + d_offset * dilations[0];
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * strides[1] - paddings[1] + h_offset * dilations[1];
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * strides[2] - paddings[2] + w_offset * dilations[2];

            if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 &&
                w_pad < input_width && d_pad >= 0 && d_pad < input_depth) {
              int vol_idx =
                  ((cIm * input_depth + d_pad) * input_height + h_pad) *
                      input_width +
                  w_pad;

              int col_idx =
                  ((c * output_depth + d) * output_height + h) * output_width +
                  w;
              vol_data[vol_idx] += col_data[col_idx];
朔-望's avatar
朔-望 已提交
189
            }
190
          }
朔-望's avatar
朔-望 已提交
191
        }
192
      }
朔-望's avatar
朔-望 已提交
193
    }
194
  }
朔-望's avatar
朔-望 已提交
195 196 197 198 199 200 201
};

template class Vol2ColFunctor<CPU, float>;
template class Vol2ColFunctor<CPU, double>;
template class Col2VolFunctor<CPU, float>;
template class Col2VolFunctor<CPU, double>;

朔-望's avatar
朔-望 已提交
202 203 204
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile