paddle_inference_api.h 5.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
 * ATTENTION: It requires some C++ features, for lower version C++ or C, we
 * might release another API.
 */

#pragma once

#include <cassert>
#include <memory>
#include <string>
#include <vector>

namespace paddle_mobile {

Z
zhangyang0701 已提交
31
#ifdef PADDLE_MOBILE_FPGA
32

Z
zhangyang0701 已提交
33 34
namespace fpga {
int open_device();
35
int close_device();
36 37
void* fpga_malloc(size_t size);
void fpga_free(void* ptr);
Z
zhangyang0701 已提交
38 39 40 41

//  Usage:
//  auto version = fpga::paddle_mobile_version();
//  std::cout << "0X0" << std::hex << version << std::endl;
42
uint32_t paddle_mobile_version();
43
}  // namespace fpga
Z
zhangyang0701 已提交
44 45
#endif

N
nhzlx 已提交
46 47
enum PaddleDType {
  FLOAT32,
48
  FLOAT16,
N
nhzlx 已提交
49
  INT64,
50 51 52 53 54 55
  INT8,
};

enum LayoutType {
  LAYOUT_CHW = 1,
  LAYOUT_HWC = 0,
N
nhzlx 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
};

class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
L
liuruilong 已提交
69
  explicit PaddleBuf(size_t length)
N
nhzlx 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
typedef enum {
  paddle_void = 0,
  paddle_float,
  paddle_int,
  paddle_uint16_t,
  paddle_double,
  paddle_int64_t,
  paddle_size_t,
  paddle_int16_t,
  paddle_int8_t,
  paddle_uint8_t,
  paddle_bool,
  paddle_string,
  paddle_floats = 100,
  paddle_ints,
  paddle_int64_ts,
  paddle_size_ts,
  paddle_bools,
  paddle_strings,
  paddle_const_float = 200,
  paddle_const_int,
  paddle_block = 300,
  paddle_tensor,
  paddle_lod_tensor,
  paddle_blocks,
  paddle_tensors,
  paddle_lod_tensors,
  paddle_p_block = 400,
  paddle_p_tensor,
  paddle_p_lod_tensor,
  paddle_p_blocks,
  paddle_p_tensors,
  paddle_p_lod_tensors,
  paddle_scopes = 500,
  paddle_selected_rows,
  paddle_dim0 = 600,
  paddle_dim1,
  paddle_dim2,
  paddle_dim3,
  paddle_dim4,
  paddle_dim5,
  paddle_dim6,
  paddle_dim7,
  paddle_dim8,
  paddle_dim9,
#ifdef PADDLE_MOBILE_CL
  paddle_cl_image,
#endif
} PaddlekTypeId_t;

N
nhzlx 已提交
138 139 140 141
struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
142
  std::vector<int> lod;
N
nhzlx 已提交
143 144
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
145
  PaddlekTypeId_t dtypeid;
146
  LayoutType layout;
N
nhzlx 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
};

enum class PaddleEngineKind {
  kPaddleMobile,
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
  // kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
};

/*
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
Z
zhangyang0701 已提交
172

N
nhzlx 已提交
173 174 175 176 177 178 179 180 181
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
182 183
    std::string prog_file;
    std::string param_file;
N
nhzlx 已提交
184
  };
Z
zhangyang0701 已提交
185
#ifdef PADDLE_MOBILE_FPGA
186 187 188
  virtual void Predict_From_To(int start, int end) = 0;
  virtual void FeedPaddleTensors(const std::vector<PaddleTensor>& inputs) = 0;
  virtual void FetchPaddleTensors(std::vector<PaddleTensor>* outputs) = 0;
J
jameswu2014 已提交
189
  virtual void FetchPaddleTensors(PaddleTensor* outputs, int id) = 0;
190 191
  virtual void GetPaddleTensor(const std::string& name,
                               PaddleTensor* output) = 0;
Z
zhangyang0701 已提交
192
#endif
L
liuruilong 已提交
193 194 195

 protected:
  PaddlePredictor() = default;
N
nhzlx 已提交
196 197
};

xiebaiyuan's avatar
xiebaiyuan 已提交
198 199 200 201 202 203 204 205
struct PaddleModelMemoryPack {
  bool from_memory = false;
  size_t model_size = 0;
  uint8_t* model_buf = nullptr;
  size_t combined_params_size = 0;
  uint8_t* combined_params_buf = nullptr;
};

N
nhzlx 已提交
206 207
struct PaddleMobileConfig : public PaddlePredictor::Config {
  enum Precision { FP32 = 0 };
L
liuruilong 已提交
208
  enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2, kGPU_CL = 3 };
N
nhzlx 已提交
209 210 211 212 213 214 215

  enum Precision precision;
  enum Device device;

  int batch_size = 1;
  bool optimize = true;
  bool quantification = false;
216
  bool lod_mode = false;
N
nhzlx 已提交
217
  int thread_num = 1;
218
  bool load_when_predict = false;
Y
yangfei 已提交
219
  std::string cl_path;
xiebaiyuan's avatar
xiebaiyuan 已提交
220
  struct PaddleModelMemoryPack memory_pack;
N
nhzlx 已提交
221 222 223 224 225 226 227 228
};

// A factory to help create different predictors.
template <typename ConfigT,
          PaddleEngineKind engine = PaddleEngineKind::kPaddleMobile>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

}  // namespace paddle_mobile