yolo_box.cc 5.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "lite/backends/arm/math/yolo_box.h"
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

namespace paddle {
namespace lite {
namespace arm {
namespace math {

namespace {
inline float sigmoid(float x) { return 1.f / (1.f + expf(-x)); }

inline void get_yolo_box(float* box,
                         const float* x,
                         const int* anchors,
                         int i,
                         int j,
                         int an_idx,
                         int grid_size,
                         int input_size,
                         int index,
                         int stride,
                         int img_height,
                         int img_width) {
  box[0] = (i + sigmoid(x[index])) * img_width / grid_size;
  box[1] = (j + sigmoid(x[index + stride])) * img_height / grid_size;
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
           input_size;
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
           img_height / input_size;
}

inline int get_entry_index(int batch,
                           int an_idx,
                           int hw_idx,
                           int an_num,
                           int an_stride,
                           int stride,
                           int entry) {
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

inline void calc_detection_box(float* boxes,
                               float* box,
                               const int box_idx,
                               const int img_height,
                               const int img_width) {
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;

  boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<float>(0);
  boxes[box_idx + 1] =
      boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<float>(0);
  boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                           ? boxes[box_idx + 2]
                           : static_cast<float>(img_width - 1);
  boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                           ? boxes[box_idx + 3]
                           : static_cast<float>(img_height - 1);
}

inline void calc_label_score(float* scores,
                             const float* input,
                             const int label_idx,
                             const int score_idx,
                             const int class_num,
                             const float conf,
                             const int stride) {
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid(input[label_idx + i * stride]);
  }
}
}  // namespace

void yolobox(lite::Tensor* X,
             lite::Tensor* ImgSize,
             lite::Tensor* Boxes,
             lite::Tensor* Scores,
             std::vector<int> anchors,
             int class_num,
             float conf_thresh,
             int downsample_ratio) {
  const int n = X->dims()[0];
  const int h = X->dims()[2];
  const int w = X->dims()[3];
  const int b_num = Boxes->dims()[1];
  const int an_num = anchors.size() / 2;
  int X_size = downsample_ratio * h;

  const int stride = h * w;
  const int an_stride = (class_num + 5) * stride;

  auto anchors_data = anchors.data();

  const float* X_data = X->data<float>();
J
juncaipeng 已提交
111
  int* ImgSize_data = ImgSize->mutable_data<int>();
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118

  float* Boxes_data = Boxes->mutable_data<float>();

  float* Scores_data = Scores->mutable_data<float>();

  float box[4];
  for (int i = 0; i < n; i++) {
J
juncaipeng 已提交
119 120
    int img_height = ImgSize_data[2 * i];
    int img_width = ImgSize_data[2 * i + 1];
Y
Yan Chunwei 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj_idx =
              get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 4);
          float conf = sigmoid(X_data[obj_idx]);
          if (conf < conf_thresh) {
            continue;
          }

          int box_idx =
              get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 0);
          get_yolo_box(box,
                       X_data,
                       anchors_data,
                       l,
                       k,
                       j,
                       h,
                       X_size,
                       box_idx,
                       stride,
                       img_height,
                       img_width);
          box_idx = (i * b_num + j * stride + k * w + l) * 4;
          calc_detection_box(Boxes_data, box, box_idx, img_height, img_width);

          int label_idx =
              get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 5);
          int score_idx = (i * b_num + j * stride + k * w + l) * class_num;
          calc_label_score(Scores_data,
                           X_data,
                           label_idx,
                           score_idx,
                           class_num,
                           conf,
                           stride);
        }
      }
    }
  }
}

}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle