multiclass_nms_compute.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/fpga/multiclass_nms_compute.h"
#include <map>
#include <utility>
#include <vector>

#include "lite/backends/fpga/KD/debugger.hpp"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static void GetMaxScoreIndex(const std::vector<T>& scores,
                             const T threshold,
                             int top_k,
                             std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(),
                   sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
static T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static T JaccardOverlap(const T* box1, const T* box2, const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
T PolyIoU(const T* box1,
          const T* box2,
          const size_t box_size,
          const bool normalized) {
  LOG(FATAL) << "PolyIoU not implement.";
C
chonwhite 已提交
97
  return *box1;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

template <class T>
void SliceOneClass(const Tensor& items,
                   const int class_id,
                   Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>();
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int64_t class_num = items.dims()[1];
  if (items.dims().size() == 3) {
    int64_t item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
  }
}

template <typename T>
void NMSFast(const Tensor& bbox,
             const Tensor& scores,
             const T score_threshold,
             const T nms_threshold,
             const T eta,
             const int64_t top_k,
             std::vector<int>* selected_indices,
             const bool normalized) {
  // The total boxes for each instance.
C
chonwhite 已提交
132
  // std::cout << "1\n";
133
  int64_t num_boxes = bbox.dims()[0];
C
chonwhite 已提交
134
  // std::cout << "1,1\n";
135 136 137 138
  // 4: [xmin ymin xmax ymax]
  // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
  // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
  int64_t box_size = bbox.dims()[1];
C
chonwhite 已提交
139
  // std::cout << "1,2\n";
140 141 142

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
C
chonwhite 已提交
143
  // std::cout << "1,3\n";
144
  std::vector<std::pair<T, int>> sorted_indices;
C
chonwhite 已提交
145
  // std::cout << "1,4\n";
146 147
  GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

C
chonwhite 已提交
148
  // std::cout << "2\n";
149 150 151
  selected_indices->clear();
  T adaptive_threshold = nms_threshold;
  const T* bbox_data = bbox.data<T>();
C
chonwhite 已提交
152
  // std::cout << "3\n";
153 154
  while (sorted_indices.size() != 0) {
    const int idx = sorted_indices.front().second;
C
chonwhite 已提交
155
    // std::cout << "4\n";
156 157
    bool keep = true;
    for (size_t k = 0; k < selected_indices->size(); ++k) {
C
chonwhite 已提交
158
      // std::cout << "5\n";
159 160 161
      if (keep) {
        const int kept_idx = (*selected_indices)[k];
        T overlap = T(0.);
C
chonwhite 已提交
162
        // std::cout << "6\n";
163 164 165 166 167 168
        // 4: [xmin ymin xmax ymax]
        if (box_size == 4) {
          overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size,
                                      normalized);
        }
C
chonwhite 已提交
169
        // std::cout << "7\n";
170 171 172 173 174 175 176 177 178 179 180 181
        // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
        if (box_size == 8 || box_size == 16 || box_size == 24 ||
            box_size == 32) {
          overlap = PolyIoU<T>(bbox_data + idx * box_size,
                               bbox_data + kept_idx * box_size,
                               box_size,
                               normalized);
        }
        keep = overlap <= adaptive_threshold;
      } else {
        break;
      }
C
chonwhite 已提交
182
      // std::cout << "8\n";
183
    }
C
chonwhite 已提交
184
    // std::cout << "9\n";
185 186 187
    if (keep) {
      selected_indices->push_back(idx);
    }
C
chonwhite 已提交
188
    // std::cout << "10\n";
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    sorted_indices.erase(sorted_indices.begin());
    if (keep && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
}

template <typename T>
void MultiClassNMS(const operators::MulticlassNmsParam& param,
                   const Tensor& scores,
                   const Tensor& bboxes,
                   const int scores_size,
                   std::map<int, std::vector<int>>* indices,
                   int* num_nmsed_out) {
  int64_t background_label = param.background_label;
  int64_t nms_top_k = param.nms_top_k;
  int64_t keep_top_k = param.keep_top_k;
  bool normalized = param.normalized;
  T nms_threshold = static_cast<T>(param.nms_threshold);
  T nms_eta = static_cast<T>(param.nms_eta);
  T score_threshold = static_cast<T>(param.score_threshold);

  int num_det = 0;

C
chonwhite 已提交
213 214
  int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
  Tensor bbox_slice, score_slice;
215 216
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
C
chonwhite 已提交
217 218

    // std::cout << "------ 1 \n";
219
    if (scores_size == 3) {
C
chonwhite 已提交
220
      // std::cout << "------ scores_size = 3 \n";
221
      scores.Slice<T>(score_slice, c, c + 1);
C
chonwhite 已提交
222
      // bbox_slice = bboxes;
223
    } else {
C
chonwhite 已提交
224
      // std::cout << "------ scores_size != 3 \n";
225 226 227 228 229
      score_slice.Resize({scores.dims()[0], 1});
      bbox_slice.Resize({scores.dims()[0], 4});
      SliceOneClass<T>(scores, c, &score_slice);
      SliceOneClass<T>(bboxes, c, &bbox_slice);
    }
C
chonwhite 已提交
230
    NMSFast(bboxes,// TODO
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            score_slice,
            score_threshold,
            nms_threshold,
            nms_eta,
            nms_top_k,
            &((*indices)[c]),
            normalized);
    if (scores_size == 2) {
      std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
    }
    num_det += (*indices)[c].size();
  }

  *num_nmsed_out = num_det;
  const T* scores_data = scores.data<T>();
  if (keep_top_k > -1 && num_det > keep_top_k) {
    const T* sdata;
    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : *indices) {
      int label = it.first;
      if (scores_size == 3) {
        sdata = scores_data + label * scores.dims()[1];
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        SliceOneClass<T>(scores, label, &score_slice);
        sdata = score_slice.data<T>();
      }
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        score_index_pairs.push_back(
            std::make_pair(sdata[idx], std::make_pair(label, idx)));
      }
    }
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(),
                     score_index_pairs.end(),
                     SortScorePairDescend<std::pair<int, int>>);
    score_index_pairs.resize(keep_top_k);

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (size_t j = 0; j < score_index_pairs.size(); ++j) {
      int label = score_index_pairs[j].second.first;
      int idx = score_index_pairs[j].second.second;
      new_indices[label].push_back(idx);
    }
    if (scores_size == 2) {
      for (const auto& it : new_indices) {
        int label = it.first;
        std::stable_sort(new_indices[label].begin(), new_indices[label].end());
      }
    }
    new_indices.swap(*indices);
    *num_nmsed_out = keep_top_k;
  }
}

template <typename T>
void MultiClassOutput(const Tensor& scores,
                      const Tensor& bboxes,
                      const std::map<int, std::vector<int>>& selected_indices,
                      const int scores_size,
C
chonwhite 已提交
294 295 296
                      Tensor* outs,
                      int* oindices = nullptr,
                      const int offset = 0) {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  int64_t class_num = scores.dims()[1];
  int64_t predict_dim = scores.dims()[1];
  int64_t box_size = bboxes.dims()[1];
  if (scores_size == 2) {
    box_size = bboxes.dims()[2];
  }
  int64_t out_dim = box_size + 2;
  auto* scores_data = scores.data<T>();
  auto* bboxes_data = bboxes.data<T>();
  auto* odata = outs->mutable_data<T>();
  const T* sdata;
  Tensor bbox;
  bbox.Resize({scores.dims()[0], box_size});
  int count = 0;
  for (const auto& it : selected_indices) {
    int label = it.first;
    const std::vector<int>& indices = it.second;
    if (scores_size == 2) {
      SliceOneClass<T>(bboxes, label, &bbox);
    } else {
      sdata = scores_data + label * predict_dim;
    }
    for (size_t j = 0; j < indices.size(); ++j) {
      int idx = indices[j];
      odata[count * out_dim] = label;  // label
      const T* bdata;
      if (scores_size == 3) {
        bdata = bboxes_data + idx * box_size;
        odata[count * out_dim + 1] = sdata[idx];  // score
C
chonwhite 已提交
326 327 328
        if (oindices != nullptr) {
          oindices[count] = offset + idx;
        }
329 330 331
      } else {
        bdata = bbox.data<T>() + idx * box_size;
        odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
C
chonwhite 已提交
332 333 334
        if (oindices != nullptr) {
          oindices[count] = offset + idx * class_num + label;
        }
335 336 337 338 339 340 341 342 343 344
      }
      // xmin, ymin, xmax, ymax or multi-points coordinates
      std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
      count++;
    }
  }
}

void MulticlassNmsCompute::Run() {
  auto& param = Param<operators::MulticlassNmsParam>();
C
chonwhite 已提交
345 346
  auto* boxes = param.bboxes;
  auto* scores = param.scores;
347
  auto* outs = param.out;
C
chonwhite 已提交
348 349 350
  bool return_index = param.index ? true : false;
  auto* index = param.index;
  auto score_dims = scores->dims();
351 352 353 354 355
  auto score_size = score_dims.size();

  std::vector<std::map<int, std::vector<int>>> all_indices;
  std::vector<uint64_t> batch_starts = {0};
  int64_t batch_size = score_dims[0];
C
chonwhite 已提交
356
  int64_t box_dim = boxes->dims()[2];
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  int64_t out_dim = box_dim + 2;
  int num_nmsed_out = 0;
  Tensor boxes_slice, scores_slice;
  int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
  for (int i = 0; i < n; ++i) {
    if (score_size == 3) {
      scores->Slice<float>(scores_slice, i, i + 1);
      scores_slice.Resize({score_dims[1], score_dims[2]});
      boxes->Slice<float>(boxes_slice, i, i + 1);
      boxes_slice.Resize({score_dims[2], box_dim});
    } else {
      auto boxes_lod = boxes->lod().back();
      scores->Slice<float>(scores_slice, boxes_lod[i], boxes_lod[i + 1]);
      boxes->Slice<float>(boxes_slice, boxes_lod[i], boxes_lod[i + 1]);
    }
    std::map<int, std::vector<int>> indices;
    MultiClassNMS<float>(
        param, scores_slice, boxes_slice, score_size, &indices, &num_nmsed_out);
    all_indices.push_back(indices);
    batch_starts.push_back(batch_starts.back() + num_nmsed_out);
  }

  uint64_t num_kept = batch_starts.back();
  if (num_kept == 0) {
C
chonwhite 已提交
381 382 383 384 385 386 387 388 389
    if (return_index) {
      outs->Resize({0, out_dim});
      index->Resize({0, 1});
    } else {
      outs->Resize({1, 1});
      float* od = outs->mutable_data<float>();
      od[0] = -1;
      batch_starts = {0, 1};
    }
390 391
  } else {
    outs->Resize({static_cast<int64_t>(num_kept), out_dim});
C
chonwhite 已提交
392 393 394
    outs->mutable_data<float>();
    int offset = 0;
    int* oindices = nullptr;
395 396 397 398 399 400
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores->Slice<float>(scores_slice, i, i + 1);
        boxes->Slice<float>(boxes_slice, i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice.Resize({score_dims[2], box_dim});
C
chonwhite 已提交
401 402 403
        if (return_index) {
          offset = i * score_dims[2];
        }
404 405 406 407
      } else {
        auto boxes_lod = boxes->lod().back();
        scores->Slice<float>(scores_slice, boxes_lod[i], boxes_lod[i + 1]);
        boxes->Slice<float>(boxes_slice, boxes_lod[i], boxes_lod[i + 1]);
C
chonwhite 已提交
408 409 410
        if (return_index) {
          offset = boxes_lod[i] * score_dims[1];
        }
411 412 413 414 415 416
      }
      int64_t s = static_cast<int64_t>(batch_starts[i]);
      int64_t e = static_cast<int64_t>(batch_starts[i + 1]);
      if (e > s) {
        Tensor out;
        outs->Slice<float>(out, s, e);
C
chonwhite 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429
        if (return_index) {
          index->Resize({static_cast<int64_t>(num_kept), 1});
          int* output_idx = index->mutable_data<int>();
          oindices = output_idx + s;
        }
        MultiClassOutput<float>(scores_slice,
                                boxes_slice,
                                all_indices[i],
                                score_dims.size(),
                                &out,
                                oindices,
                                offset);
        // out.ZynqTensor()->saveToFile("nms_o", true);
430
        outs->ZynqTensor()->copyFrom(out.ZynqTensor());
C
chonwhite 已提交
431
        outs->ZynqTensor()->flush();
432 433 434
      }
    }
  }
C
chonwhite 已提交
435

436 437
  LoD lod;
  lod.emplace_back(batch_starts);
C
chonwhite 已提交
438 439 440
  if (return_index) {
    index->set_lod(lod);
  }
441 442
  outs->set_lod(lod);

C
chonwhite 已提交
443 444 445
  // boxes->ZynqTensor()->saveToFile("boxes", true);
  // scores->ZynqTensor()->saveToFile("scores", true);
  // outs->ZynqTensor()->saveToFile("nms", true);
446 447 448 449 450 451 452 453 454 455 456
}
}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(multiclass_nms,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::MulticlassNmsCompute,
C
chonwhite 已提交
457 458 459 460
                     def)
    .BindInput("BBoxes", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Scores", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
461
    .Finalize();
C
chonwhite 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

// REGISTER_LITE_KERNEL(multiclass_nms,
//                      kFPGA,
//                      kFP16,
//                      kNHWC,
//                      paddle::lite::kernels::fpga::MulticlassNmsCompute,
//                      def2)
//     .BindInput("BBoxes",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .BindInput("Scores",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .BindOutput("Out",
//                 {LiteType::GetTensorTy(TARGET(kFPGA),
//                                        PRECISION(kFloat),
//                                        DATALAYOUT(kNHWC))})
//     .Finalize();