test_mobilenet_GPU.cpp 2.3 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"

int main() {
20 21
  paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> paddle_mobile;
  //    paddle_mobile.SetThreadNum(4);
L
liuruilong 已提交
22
  auto time1 = paddle_mobile::time();
23 24 25 26 27
  //  auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
  //                     std::string(g_mobilenet_detect) + "/params", true);

  auto isok = paddle_mobile.Load(g_mobilenet, false);
  if (isok) {
L
liuruilong 已提交
28
    auto time2 = paddle_mobile::time();
Y
yangfei 已提交
29 30
    std::cout << "load cost :" << paddle_mobile::time_diff(time1, time1) << "ms"
              << std::endl;
31 32 33 34 35 36

    std::vector<float> input;
    std::vector<int64_t> dims{1, 3, 224, 224};
    GetInput<float>(g_test_image_1x3x224x224_banana, &input, dims);

    auto vec_result = paddle_mobile.Predict(input, dims);
L
liuruilong 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    //    std::vector<float>::iterator biggest =
    //        std::max_element(std::begin(vec_result), std::end(vec_result));
    //    std::cout << " Max element is " << *biggest << " at position "
    //              << std::distance(std::begin(vec_result), biggest) <<
    //              std::endl;

    //    for (int i = 0; i < 10; ++i) {
    //      auto vec_result = paddle_mobile.Predict(input, dims);
    //    }
    //    auto time3 = paddle_mobile::time();
    //    for (int i = 0; i < 10; ++i) {
    //      auto vec_result = paddle_mobile.Predict(input, dims);
    //    }
    //    DLOG << vec_result;
    //    auto time4 = paddle_mobile::time();
    //    std::cout << "predict cost :" << paddle_mobile::time_diff(time3,
    //    time4) / 10 << "ms"
    //              << std::endl;
55 56 57 58 59 60
  }

  std::cout << "如果结果Nan请查看: test/images/g_test_image_1x3x224x224_banana "
               "是否存在?"
            << std::endl;
  return 0;
Y
yangfei 已提交
61
}