yolo_box_compute_test.cc 8.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <vector>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

namespace {
inline float sigmoid(float x) { return 1.f / (1.f + expf(-x)); }

inline void get_yolo_box(float* box,
                         const float* x,
                         const int* anchors,
                         int i,
                         int j,
                         int an_idx,
                         int grid_size,
                         int input_size,
                         int index,
                         int stride,
                         int img_height,
                         int img_width) {
  box[0] = (i + sigmoid(x[index])) * img_width / grid_size;
  box[1] = (j + sigmoid(x[index + stride])) * img_height / grid_size;
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
           input_size;
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
           img_height / input_size;
}

inline int get_entry_index(int batch,
                           int an_idx,
                           int hw_idx,
                           int an_num,
                           int an_stride,
                           int stride,
                           int entry) {
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

inline void calc_detection_box(float* boxes,
                               float* box,
                               const int box_idx,
                               const int img_height,
                               const int img_width) {
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;

  boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<float>(0);
  boxes[box_idx + 1] =
      boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<float>(0);
  boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                           ? boxes[box_idx + 2]
                           : static_cast<float>(img_width - 1);
  boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                           ? boxes[box_idx + 3]
                           : static_cast<float>(img_height - 1);
}

inline void calc_label_score(float* scores,
                             const float* input,
                             const int label_idx,
                             const int score_idx,
                             const int class_num,
                             const float conf,
                             const int stride) {
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid(input[label_idx + i * stride]);
  }
}
}  // namespace

class YoloBoxComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input0_ = "X";
  std::string input1_ = "ImgSize";
  std::string output0_ = "Boxes";
  std::string output1_ = "Scores";
  std::vector<int> anchors_;
  int class_num_ = 0;
  float conf_thresh_ = 0.f;
  int downsample_ratio_ = 0;

  DDim _dims0_{{1, 2, 2, 1}};
  DDim _dims1_{{1, 2}};

 public:
  YoloBoxComputeTester(const Place& place,
                       const std::string& alias,
                       std::vector<int> anchors,
                       int class_num,
                       float conf_thresh,
                       int downsample_ratio)
      : TestCase(place, alias),
        anchors_(anchors),
        class_num_(class_num),
        conf_thresh_(conf_thresh),
        downsample_ratio_(downsample_ratio) {}

  void RunBaseline(Scope* scope) override {
    const lite::Tensor* X = scope->FindTensor(input0_);
    const lite::Tensor* ImgSize = scope->FindTensor(input1_);
    auto* in = X;
    auto* imgsize = ImgSize;
    auto anchors = anchors_;
    int class_num = class_num_;
    float conf_thresh = conf_thresh_;
    int downsample_ratio = downsample_ratio_;

    const int n = in->dims()[0];
    const int h = in->dims()[2];
    const int w = in->dims()[3];
    const int an_num = anchors.size() / 2;
    int in_size = downsample_ratio * h;
    int box_num = in->dims()[2] * in->dims()[3] * an_num;

    lite::Tensor* Boxes = scope->NewTensor(output0_);
    lite::Tensor* Scores = scope->NewTensor(output1_);
    CHECK(Boxes);
    CHECK(Scores);
    Boxes->Resize({in->dims()[0], box_num, 4});
    Scores->Resize({in->dims()[0], box_num, class_num});
    auto* boxes = Boxes;
    auto* scores = Scores;
    const int b_num = boxes->dims()[0];

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

    auto anchors_data = anchors.data();
    const float* in_data = in->data<float>();
    const float* imgsize_data = imgsize->data<float>();
    float* boxes_data = boxes->mutable_data<float>();
    float* scores_data = scores->mutable_data<float>();

    float box[4];
    for (int i = 0; i < n; i++) {
      int img_height = static_cast<int>(imgsize_data[2 * i]);
      int img_width = static_cast<int>(imgsize_data[2 * i + 1]);
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 4);
            float conf = sigmoid(in_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }
            int box_idx =
                get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 0);
            get_yolo_box(box,
                         in_data,
                         anchors_data,
                         l,
                         k,
                         j,
                         h,
                         in_size,
                         box_idx,
                         stride,
                         img_height,
                         img_width);
            box_idx = (i * b_num + j * stride + k * w + l) * 4;
            calc_detection_box(boxes_data, box, box_idx, img_height, img_width);

            int label_idx =
                get_entry_index(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * b_num + j * stride + k * w + l) * class_num;
            calc_label_score(scores_data,
                             in_data,
                             label_idx,
                             score_idx,
                             class_num,
                             conf,
                             stride);
          }
        }
      }
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("yolo_box");
    op_desc->SetInput("X", {input0_});
    op_desc->SetInput("ImgSize", {input1_});
    op_desc->SetOutput("Boxes", {output0_});
    op_desc->SetOutput("Scores", {output1_});
    op_desc->SetAttr("anchors", anchors_);
    op_desc->SetAttr("class_num", class_num_);
    op_desc->SetAttr("conf_thresh", conf_thresh_);
    op_desc->SetAttr("downsample_ratio", downsample_ratio_);
  }

  void PrepareData() override {
    std::vector<float> data0(_dims0_.production());
    for (int i = 0; i < _dims0_.production(); i++) {
      data0[i] = i * 1.1;
    }
    std::vector<int> data1(_dims1_.production());
    for (int i = 0; i < _dims1_.production(); i++) {
      data1[i] = i + 8;
    }
    SetCommonTensor(input0_, _dims0_, data0.data());
    SetCommonTensor(input1_, _dims1_, data1.data());
  }
};

void test_yolobox(Place place) {
  for (int class_num : {1, 2, 3, 4}) {
    for (float conf_thresh : {0.5, 0.2, 0.7}) {
      for (int downsample_ratio : {1, 2, 3}) {
        std::vector<int> anchor({1, 2, 3, 4});

        std::unique_ptr<arena::TestCase> tester(new YoloBoxComputeTester(
            place, "def", anchor, class_num, conf_thresh, downsample_ratio));
        arena::Arena arena(std::move(tester), place, 2e-5);
        arena.TestPrecision();
      }
    }
  }
}

TEST(YoloBox, precision) {
// #ifdef LITE_WITH_X86
//   Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_yolobox(place);
#endif
}

}  // namespace lite
}  // namespace paddle