conv_add_kernel.cpp 4.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

W
wangliu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
void expand_bias(Tensor &bias, int axis, const DDim &dDim) {
  auto bias_ptr = bias.data<float>();
  const DDim bias_ddim = bias.dims();
  PADDLE_MOBILE_ENFORCE(bias.dims().size() == 1,
                        "the bias tensor's dims size != 1")
  DDim outer_ddim = paddle_mobile::framework::slice_ddim(dDim, 0, axis + 1);
  DDim inner_ddim =
      paddle_mobile::framework::slice_ddim(dDim, axis + 1, dDim.size());
  int outer_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);
  bias.Resize(dDim);
  auto new_ptr = bias.mutable_data<float>();
  int axis_size = dDim[axis];
  for (int i = 0; i < outer_size; ++i) {
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (int j = 0; j < inner_size; ++j) {
      new_ptr[i * inner_size + j] = v_bias;
    }
  }
}


W
wangliu 已提交
43
template <>
W
wangliu 已提交
44 45
void ConvAddKernel<CPU, float>::Compute(
    const FushionConvAddParam &param) const {
W
wangliu 已提交
46 47 48 49
  DLOG << param;

  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
W
wangliu 已提交
50 51
  Tensor bias = *param.Bias();
  int axis = param.Axis();
W
wangliu 已提交
52
  Tensor *output = param.Output();
W
wangliu 已提交
53 54
  expand_bias(bias, axis, output->dims());
  output->ShareDataWith(bias);
W
wangliu 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
W
wangliu 已提交
75
      framework::flatten_to_2d(col_shape, data_dim + 1);
W
wangliu 已提交
76 77 78 79 80 81 82 83 84 85 86

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
W
wangliu 已提交
87
      input->dims(), 1, static_cast<int>(input->dims().size()));
W
wangliu 已提交
88 89 90 91 92

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
W
wangliu 已提交
93 94
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
W
wangliu 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
W
wangliu 已提交
130
                          static_cast<float>(1));
W
wangliu 已提交
131 132 133 134 135 136 137 138 139
    }
  }
}
template class ConvAddKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif