api.cpp 42.6 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "fpga/V2/api.h"
16
#include <memory>
Z
zhangyang 已提交
17
#include "fpga/V2/bias_scale.h"
18
#include "fpga/V2/deconv_filter.h"
Z
zhangyang 已提交
19 20
#include "fpga/V2/filter.h"
#include "fpga/V2/image.h"
Z
zhangyang 已提交
21

Z
zhangyang 已提交
22
namespace paddle_mobile {
H
hanbuhe 已提交
23
namespace fpga {
Z
zhangyang 已提交
24

25
#define USE_RELU 1
26 27
#define USE_BIAS 2

Z
zhangyang 已提交
28 29
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
30
  auto channel = dims[1], height = dims[2], width = dims[3];
31 32 33
  auto data_ptr = image_tensor->data<int8_t>();
  auto external_ptr = reinterpret_cast<int8_t *>(image_tensor->external_data);
  int8_t *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
34

35
  image::format_image<int8_t>(&p_data, channel, height, width);
36
  if (p_data != data_ptr) {
37
    image_tensor->reset_data_ptr(p_data);
38
  }
Z
zhangyang 已提交
39 40
}

41 42 43
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == type_id<float>()) {
    format_fp32_ofm(ofm_tensor);
44 45
  } else {
    format_int8_ofm(ofm_tensor);
46 47
  }
}
48 49

void format_int8_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
50
  auto dims = ofm_tensor->dims();
51 52
  size_t memory_size = 0;
  if (dims.size() == 4) {
53 54
    auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
55
                  sizeof(int8_t);
56
  } else if (dims.size() == 2) {
57
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(int8_t);
58 59 60 61 62
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
63 64
  ofm_tensor->set_type(type_id<int8_t>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(int8_t);
65 66 67
  fpga::fpga_flush(p, memory_size);
}

68
void format_int8_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
69 70 71 72
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
73 74 75 76 77 78 79 80 81 82 83 84 85
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(int8_t);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(int8_t);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
  ofm_tensor->set_type(type_id<int8_t>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(int8_t);
  fpga::fpga_flush(p, memory_size);
}

86
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
87 88 89
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
90 91 92
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
93
  } else if (dims.size() == 2) {
94
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
95 96 97 98 99
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
100 101 102
  ofm_tensor->set_type(type_id<float>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
  fpga::fpga_flush(p, memory_size);
Z
zhangyang 已提交
103 104
}

Z
zhangyang 已提交
105 106
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
107
  return filter::find_max(filter_ptr, filter_tensor->numel());
Z
zhangyang 已提交
108
}
Z
zhangyang 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
Z
zhangyang 已提交
131 132
}

133 134
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
Z
zhangyang 已提交
135
  auto dims = filter_tensor->dims();
136 137 138 139
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
Z
zhangyang 已提交
140 141
}

142 143
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
Z
zhangyang 已提交
144
}
145

Z
zhangyang 已提交
146 147
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
148 149
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
150
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
151
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
152
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
153
  size_t memory_size = num * channel * height * width * sizeof(float);
154
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int8_t>().hash_code());
}
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int16_t>().hash_code());
}

void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

Z
zhangyang 已提交
191
  filter_tensor->reset_data_ptr(new_data);
192
  filter_tensor->set_type(type_id<int16_t>().hash_code());
Z
zhangyang 已提交
193 194
}

Z
zhangyang 已提交
195 196 197 198 199 200 201 202
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int8_t>().hash_code());
}
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
218
  memcpy(new_data, data_ptr, memory_size);
219 220 221 222 223 224 225 226 227 228 229 230 231 232

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
Z
zhangyang 已提交
233
  filter_tensor->reset_data_ptr(new_data);
234
  filter_tensor->set_type(type_id<int8_t>().hash_code());
Z
zhangyang 已提交
235 236
}

237 238 239 240 241 242 243
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
Z
zhangyang 已提交
244 245
}

Z
zhangyang 已提交
246
void format_concat_output(framework::Tensor *out, int height, int width,
247 248 249 250 251 252 253
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
254
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(int8_t));
255
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
256 257
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
258
  out->set_type(type_id<int8_t>().hash_code());
Z
zhangyang 已提交
259
}
260 261 262
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
Z
zhangyang 已提交
263 264
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
265 266 267
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
268
  fpga::format_ofm(ofm_tensor);
269 270 271 272 273 274 275 276 277 278
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
279
  format_ofm(ofm_tensor);
280 281 282 283 284 285 286 287
}

void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
288
  format_ofm(ofm_tensor);
289 290 291 292 293 294 295 296 297
}
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
298
  format_ofm(ofm_tensor);
Z
zhangyang 已提交
299
}
300

301 302 303 304
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;

  auto fpga_bias_scale_len =
305 306 307
      align_to_x(args.filter_num / args.group_num, BS_NUM_ALIGNMENT) *
      args.group_num;
  fpga_bias_scale_len = fpga_bias_scale_len / BIAS_SCALE_DMA_NUM;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

  auto output_height =
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
  auto output_width =
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
                 FILTER_ELEMENT_ALIGNMENT);

  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
331
      RESULT_ALIGNMENT);
332 333 334 335 336 337 338 339 340

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
  for (res_win = 1; res_win <= output_width; res_win++) {
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
341
             IMAGE_ALIGNMENT +
342 343
         1) *
            args.kernel.height >
344
        256) {
345 346 347 348 349 350 351 352 353 354 355
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
356
  PADDLE_MOBILE_ENFORCE(res_win >= 2, "window too bigger than fpga volume");
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  res_fit = res_win;

  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);

  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;

  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
      args.image.pad_width * args.image.channels;
  auto image_amount_per_row_multi_win_first =
      image_amount_per_row *
      (ROW_PARALLEL_NUM * args.kernel.stride_h - args.image.pad_height);
  auto image_amount_per_row_multi_win =
      image_amount_per_row * (ROW_PARALLEL_NUM * args.kernel.stride_h);

  auto image_block_num = block_num;
  auto image_block_len =
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
382
          IMAGE_ALIGNMENT +
383 384 385 386 387 388
      1;
  auto image_block_len_last =
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
389
          IMAGE_ALIGNMENT +
390 391 392 393 394 395 396 397 398 399 400 401
      1;
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
    prog_full_cnt--;
  }
  auto post_prog_full_cnt =
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
402 403
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  // auto cmd = 0UL | USE_BIAS;
404 405 406 407

  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
                      ((args.deconv_tx_param.omit_size) << 0);
408

409 410 411
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
412 413 414 415 416 417
  (*arg).driver.deconv_param = deconv_param;
  // new
  (*arg).driver.col_padding_up = args.image.pad_width * args.image.channels;
  (*arg).driver.col_padding_down = image_one_pad_per_row;
  (*arg).driver.row_padding_up = args.image.pad_height;
  (*arg).driver.row_padding_down = args.image.pad_height + args.image.height;
418 419
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.filter_row = args.kernel.width * args.image.channels;
  (*arg).driver.filter_width = args.kernel.width;
  (*arg).driver.filter_height = args.kernel.height;
  (*arg).driver.skip_window = args.image.channels * args.kernel.stride_w;
  (*arg).driver.stride_h = args.kernel.stride_h;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.filter_align = args.filter_num / (4 * PE_COLUMN) +
                               (((args.filter_num % (4 * PE_COLUMN))) ? 1 : 0);
  (*arg).driver.filter_num = args.filter_num;
  (*arg).driver.output_width = output_width;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.cal_res_num = output_height / ROW_PARALLEL_NUM +
                              ((output_height % ROW_PARALLEL_NUM) ? 1 : 0) - 1;
  (*arg).driver.last_cal_res_row_num =
      (output_height % (ROW_PARALLEL_NUM))
          ? (output_height % (ROW_PARALLEL_NUM))
          : (ROW_PARALLEL_NUM);

  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.deconv_skip_row =
      ROW_PARALLEL_NUM *
      args.deconv_tx_param.sub_conv_num;  // paralvl*deconv_group
  (*arg).driver.deconv_res_skip_row =
      args.deconv_tx_param.sub_conv_num *
      output_amount_per_row;  // deconv_group * result_amount_per_row
  (*arg).driver.deconv_ena = args.deconv_tx_param.deconv_en;
  (*arg).driver.deconv_dump = args.deconv_tx_param.omit_size;
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
  (*arg).driver.output_height = output_height;
  (*arg).driver.result_amount_per_row_multi_para =
      output_amount_per_row / RESULT_ALIGNMENT *
      (args.deconv_tx_param.deconv_en ? (*arg).driver.deconv_skip_row
                                      : ROW_PARALLEL_NUM);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.filter_amount_whole = filter_amount_all;
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
  (*arg).driver.filters_amount_whole =
      filter_amount_all * (*arg).driver.filter_align * (4 * PE_COLUMN);
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.image_hight = args.image.height;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
467 468 469
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
470
  (*arg).driver.filter_pad_hight = args.image.pad_height;
471 472 473
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
474

475 476 477 478 479
  (*arg).driver.cmd = cmd;
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
480
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg
Z
zhangyang 已提交
505

Z
zhangyang 已提交
506 507
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
508 509
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
510
  auto input_ptr = input->data<int8_t>();
511
  auto filter_ptr = filter->data<int8_t>();
512
  auto out_ptr = out->data<int8_t>();
513
  auto deleter = [](void *p) { fpga_free(p); };
514 515

  arg->group_num = (uint32_t)group_num;
516
  // Either group_num or split_num = 1;
517
  PADDLE_MOBILE_ENFORCE(group_num == 1, "group_num is not equal to 1");
518
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
519 520 521
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
522
  arg->conv_arg =
523
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
524

525 526 527 528
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

529 530 531
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
532 533
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
534 535

  int n = arg->split_num;
536
  arg->concat_arg.images_in =
537
      static_cast<int8_t **>(fpga_malloc(n * sizeof(int *)));
538
  arg->concat_arg.scales_in =
539
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
540
  arg->concat_arg.channel_num =
541 542 543 544 545 546 547 548 549 550 551 552 553
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));

  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
554 555

  for (int i = 0; i < n; i++) {
556
    arg->conv_arg[i].relu_enabled = relu_enabled;
Z
zhangyang 已提交
557 558 559 560 561 562
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
563
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
Z
zhangyang 已提交
564 565
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
566
    arg->conv_arg[i].image.scale_address = input->scale;
Z
zhangyang 已提交
567 568
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
569 570 571 572
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
Z
zhangyang 已提交
573

574 575 576 577 578 579 580 581 582 583 584
    size_t filter_size =
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);
Z
zhangyang 已提交
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

    if (n > 1) {
      arg->conv_arg[i].output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
604
                      sizeof(int8_t));
605 606 607 608 609 610 611 612 613 614 615
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
    } else {
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] =
616
        (int8_t *)arg->conv_arg[i].output.address;  // NOLINT
617 618 619 620
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;

    expand_conv_arg(&arg->conv_arg[i]);
621
  }
622 623 624 625 626 627
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
}  // fill_split_arg

void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
628 629
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
630
                     float *bs_ptr) {
631
  auto input_ptr = input->data<int8_t>();
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
  auto filter_ptr = filter->data<int8_t>();
  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)group_num;
  arg->sub_conv_num = (uint32_t)stride_h;
  arg->filter_num = (uint32_t)filter->dims()[0];
  uint32_t sub_conv_num = arg->sub_conv_num;
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
662 663
  fpga::format_int8_ofm(out, dims_out_new);
  auto out_ptr = out->data<int8_t>();
664
  arg->output.address =
665 666
      (int8_t *)out_ptr +  // NOLINT
      omit_size * sizeof(int8_t) *
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
  uint32_t split_num =
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
        (arg->sub_conv_num) * (arg->filter_num);
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
689
        static_cast<int8_t **>(fpga_malloc(split_num * sizeof(int8_t *)));
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
  }

  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
  int element_num = get_aligned_filter_element_num(
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
  uint32_t out_addr_offset = 0;
  for (int i = 0; i < sub_conv_num; ++i) {
    if (sub_conv_num == 1) {
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
      out_addr_offset = 0;

    } else {
      out_addr_offset =
741
          sizeof(int8_t) * (sub_conv_num - 1 - i) *
742 743 744 745 746 747 748 749 750 751 752 753 754
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
    }

    for (int j = 0; j < split_num; ++j) {
755 756 757 758 759 760 761 762
      // arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type
      // =
      //    activation_enable;
      // arg->split_conv_args[i]
      //     ->conv_arg[j]
      //    .output.activation.leaky_relu_negative_slope =
      //    leaky_relu_negative_slope;
      arg->split_conv_args[i]->conv_arg[j].relu_enabled = relu_enabled;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;

      arg->split_conv_args[i]->conv_arg[j].kernel.width =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;

      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
          sub_conv_num;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
          out_addr_offset;

      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
          (uint32_t)sub_channels;
      arg->split_conv_args[i]->conv_arg[j].image.width =
          (uint32_t)input->dims()[3];
      arg->split_conv_args[i]->conv_arg[j].image.height =
          (uint32_t)input->dims()[2];
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;

      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);

      size_t filter_size =
          element_num *
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
      arg->split_conv_args[i]->conv_arg[j].filter_address =
          fpga_malloc(filter_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
             filter_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
                 filter_size);

      size_t bs_align_num = align_to_x(
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);

      if (split_num == 1) {
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
      } else {
        arg->split_conv_args[i]->conv_arg[j].output.address =
840
            fpga_malloc(conv_output_size * sizeof(int8_t));
841 842 843 844 845 846 847 848 849 850 851 852 853
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
      }
854
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<int8_t *>(
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
    }

    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
  }
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
}  // fill_deconv_arg

void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
875 876
                     bool relu_enabled, int stride_h, int stride_w,
                     int padding_h, int padding_w, float *bias_ptr) {
877
  auto filter_ptr = filter->data<int16_t>();
878 879
  auto input_ptr = input->data<int8_t>();
  auto output_ptr = out->mutable_data<int8_t>();
880
  arg->sub_conv_num = 1;
881 882
  arg->relu_enabled = relu_enabled;
  // arg->output.activation.activation_type = activation_enable;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
902 903
                       bool relu_enabled, int stride_h, int stride_w,
                       int padding_h, int padding_w, float *bias_ptr) {
904
  auto filter_ptr = filter->data<int8_t>();
905
  auto input_ptr = input->data<int8_t>();
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
939 940
  fpga::format_int8_ofm(out, dims_out_new);
  auto out_ptr = out->data<int8_t>();
941 942 943 944 945 946 947 948 949 950 951 952

  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
953 954 955 956 957
    arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    // arg->dw_conv_args[i]->output.activation.activation_type =
    // activation_enable;
    // arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
    //     leaky_relu_negative_slope;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
987
                    sizeof(int8_t));
988 989 990 991 992 993 994 995 996 997 998 999
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill
1000

H
hanbuhe 已提交
1001
}  // namespace fpga
Z
zhangyang 已提交
1002
}  // namespace paddle_mobile