transpose_compute_test.cc 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"

namespace paddle {
namespace lite {

int data_index(std::vector<int> pos, DDimLite dims) {
  int d1 = dims[1];
  int d2 = dims[2];
  int d3 = dims[3];
  return pos[3] + pos[2] * d3 + pos[1] * d3 * d2 + pos[0] * d3 * d2 * d1;
}

std::vector<int> pos_trans(std::vector<int> in_pos, std::vector<int> axis) {
  std::vector<int> out_pos(in_pos.size());
  for (int i = 0; i < axis.size(); i++) {
    out_pos[axis[i]] = in_pos[i];
  }
  return out_pos;
}

class TransposeComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string op_type_ = "transpose2";
  std::string input_ = "x";
  std::string output_ = "out";
  std::string xshape_ = "xshape";
  DDim x_dims_;
  std::vector<int> axis_;

 public:
  TransposeComputeTester(const Place& place,
                         const std::string& alias,
                         DDim x_dims,
                         std::vector<int> axis)
      : TestCase(place, alias), x_dims_(x_dims), axis_(axis) {}

  void RunBaseline(Scope* scope) override {
    auto* out = scope->NewTensor(output_);
    CHECK(out);

    auto* x = scope->FindTensor(input_);
    auto x_dims = x->dims();

    std::vector<int64_t> out_shape(x_dims.size(), 0);
    for (size_t i = 0; i < x_dims.size(); i++) {
      out_shape[i] = x_dims[axis_[i]];
    }
    out->Resize(out_shape);

    auto y_dims = out->dims();

    int input_n = x_dims[0];
    int input_c = x_dims[1];
    int input_h = x_dims[2];
    int input_w = x_dims[3];

    auto input_data = x->data<float>();
    auto output_data = out->mutable_data<float>();

    for (int n = 0; n < input_n; ++n) {
      for (int c = 0; c < input_c; ++c) {
        for (int h = 0; h < input_h; ++h) {
          for (int w = 0; w < input_w; ++w) {
            std::vector<int> in_pos{n, c, h, w};
            std::vector<int> out_pos = pos_trans(in_pos, axis_);
            int in_index = data_index(in_pos, x_dims);
            int out_index = data_index(out_pos, y_dims);
            output_data[out_index] = input_data[in_index];
          }
        }
      }
    }

    if (op_type_ == "transpose2") {
      auto* xshape = scope->NewTensor(xshape_);
      auto xshape_dims = x_dims.Vectorize();
      xshape_dims.insert(xshape_dims.begin(), 0);
      xshape->Resize(xshape_dims);
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType(op_type_);
    op_desc->SetInput("X", {input_});
    op_desc->SetOutput("Out", {output_});
    if (op_type_ == "transpose2") {
      op_desc->SetOutput("XShape", {xshape_});
    }
    op_desc->SetAttr("axis", axis_);
  }

  void PrepareData() override {
    std::vector<float> data(x_dims_.production());
    for (int i = 0; i < x_dims_.production(); i++) {
      data[i] = i * 1.1;
    }
    SetCommonTensor(input_, x_dims_, data.data());
  }
};

TEST(Transpose, precision) {
  LOG(INFO) << "test Transpose op";
  float abs_error = 2e-5;
  Place place;
#ifdef LITE_WITH_XPU
  place = TARGET(kXPU);
#else
  return;
#endif

  DDim x_dims{{2, 3, 4, 5}};
  // [XPU]: {3, 1, 0, 2} is unsupported
  std::vector<std::vector<int>> axes{
      {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 2, 1, 3}, {3, 1, 2, 0}};
  for (auto axis : axes) {
    std::unique_ptr<arena::TestCase> tester(
        new TransposeComputeTester(place, "def", x_dims, axis));
    arena::Arena arena(std::move(tester), place, abs_error);
    arena.TestPrecision({"xshape"});
  }
}

}  // namespace lite
}  // namespace paddle