test_rfcn_api.cpp 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
19
#include <iomanip>
Z
zhangyang0701 已提交
20
#include <iostream>
21
#include "../../src/io/paddle_inference_api.h"
H
update  
hjchen2 已提交
22

23 24
using namespace paddle_mobile;        // NOLINT
using namespace paddle_mobile::fpga;  // NOLINT
25

26 27 28
static const char *g_image = "../models/rfcn/data.bin";
static const char *g_model = "../models/rfcn/model";
static const char *g_param = "../models/rfcn/params";
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

void readStream(std::string filename, char *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in | std::ios::binary);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }

  in.seekg(0, std::ios::end);  // go to the end
  auto length = in.tellg();    // report location (this is the length)
  in.seekg(0, std::ios::beg);  // go back to the beginning
  in.read(buf, length);
  in.close();
}

45 46 47 48 49 50 51 52 53 54 55 56
PaddleMobileConfig GetConfig() {
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kFPGA;
  config.prog_file = g_model;
  config.param_file = g_param;
  config.thread_num = 1;
  config.batch_size = 1;
  config.optimize = true;
  config.lod_mode = true;
  config.quantification = false;
  return config;
H
update  
hjchen2 已提交
57
}
Z
zhangyang0701 已提交
58

59 60 61 62 63 64 65 66 67 68
PaddleMobileConfig GetConfig1() {
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kFPGA;
  config.model_dir = "../models/resnet50";
  config.thread_num = 1;
  config.batch_size = 1;
  config.optimize = true;
  config.quantification = false;
  return config;
H
update  
hjchen2 已提交
69
}
70

71 72
int main() {
  open_device();
73
#if 0
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  PaddleMobileConfig config1 = GetConfig1();
  auto predictor1 =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config1);

  std::cout << "Finishing loading model" << std::endl;

  int img_length1 = 224 * 224 * 3;
  auto img1 =
      reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));

  std::cout << "Finishing initializing data" << std::endl;

  struct PaddleTensor t_img1;

89
  t_img1.dtypeid = type_id<float>().hash_code();
90 91 92 93 94 95 96 97 98 99 100 101
  t_img1.layout = LAYOUT_HWC;
  t_img1.shape = std::vector<int>({1, 224, 224, 3});
  t_img1.name = "Image information";
  t_img1.data.Reset(img1, img_length1 * sizeof(float));
  predictor1->FeedPaddleTensors({t_img1});
  predictor1->Predict_From_To(0, -1);
  std::cout << "Finishing predicting " << std::endl;

  std::vector<PaddleTensor> v1;         // No need to initialize v
  predictor1->FetchPaddleTensors(&v1);  // Old data in v will be cleared
  std::cout << "Output number is " << v1.size() << std::endl;
  std::cout << "out[0] length " << v1[0].data.length() << std::endl;
102 103
  fpga_free(img1);
#endif
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  ////////////////////////////

  PaddleMobileConfig config = GetConfig();
  auto predictor =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config);

  std::cout << "Finishing loading model" << std::endl;

  float img_info[3] = {432, 1280, 1.0f};
  int img_length = 432 * 1280 * 3;
  auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
  readStream(g_image, reinterpret_cast<char *>(img));

  std::cout << "Finishing initializing data" << std::endl;
  struct PaddleTensor t_img_info, t_img;
J
Jiaying Zhao 已提交
120
  t_img.dtypeid = PaddlekTypeId_t::paddle_float;
121 122 123 124 125
  t_img_info.layout = LAYOUT_HWC;
  t_img_info.shape = std::vector<int>({1, 3});
  t_img_info.name = "Image information";
  t_img_info.data.Reset(img_info, 3 * sizeof(float));

J
Jiaying Zhao 已提交
126
  t_img.dtypeid = PaddlekTypeId_t::paddle_float;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  t_img.layout = LAYOUT_HWC;
  t_img.shape = std::vector<int>({1, 432, 1280, 3});
  t_img.name = "Image information";
  t_img.data.Reset(img, img_length * sizeof(float));
  predictor->FeedPaddleTensors({t_img_info, t_img});

  std::cout << "Finishing feeding data " << std::endl;

  predictor->Predict_From_To(0, -1);
  std::cout << "Finishing predicting " << std::endl;

  std::vector<PaddleTensor> v;        // No need to initialize v
  predictor->FetchPaddleTensors(&v);  // Old data in v will be cleared
  std::cout << "Output number is " << v.size() << std::endl;
  std::cout << "out[0] length " << v[0].data.length() << std::endl;
  std::cout << "out[1] length " << v[1].data.length() << std::endl;
  std::cout << "out[2] length " << v[2].data.length() << std::endl;

  auto post_nms = v[0].data.length() / sizeof(float) / 8;
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[0].data.data());
      std::cout << p[num * 8 + i] << std::endl;
    }
H
update  
hjchen2 已提交
151
  }
152 153 154 155 156
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[1].data.data());
      std::cout << p[num * 8 + i] << std::endl;
    }
H
update  
hjchen2 已提交
157
  }
158 159 160 161
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 4; i++) {
      auto p = reinterpret_cast<float *>(v[2].data.data());
      std::cout << p[num * 4 + i] << std::endl;
H
update  
hjchen2 已提交
162 163
    }
  }
164
  std::cout << "Finish getting vector values" << std::endl;
165 166 167 168 169
  fpga_free(img);

  auto version = fpga::paddle_mobile_version();

  std::cout << "0X0" << std::hex << version << std::endl;
Z
zhangyang0701 已提交
170

Z
zhangyang0701 已提交
171
  return 0;
172
}