bilinear_interp_image_compute.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class BilinearInterpImageCompute
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InterpolateParam;

  std::string doc() const override {
    return "BilinearInterp using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    bilinear_interp_param_ = param_.get_mutable<param_t>();

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/bilinear_interp_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = bilinear_interp_param_->X;
    auto* out = bilinear_interp_param_->Out;
    float scale_h = 0.0;
    float scale_w = 0.0;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    if (bilinear_interp_param_->align_corners) {
      scale_h = (in_dims[2] - 1.0f) / (out_dims[2] - 1.0f);
      scale_w = (in_dims[3] - 1.0f) / (out_dims[3] - 1.0f);
    } else {
      scale_h = in_dims[2] / static_cast<float>(out_dims[2]);
      scale_w = in_dims[3] / static_cast<float>(out_dims[3]);
    }
    float align_delta = 0.0f;
    if (!bilinear_interp_param_->align_corners &&
        bilinear_interp_param_->align_mode == 0) {
      align_delta = 0.5f;
    }

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

80
#ifndef LITE_SHUTDOWN_LOG
81 82 83 84
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
85
#endif
86 87 88 89 90 91

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
92 93 94

#ifndef LITE_SHUTDOWN_LOG
    // VLOG(4) << "x_image: " << x_img;
95 96 97 98 99 100 101 102
    // VLOG(4) << "out_image: " << out_img;
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "scale_h: " << scale_h << ", scale_w: " << scale_w
            << ", align_delta: " << align_delta;
    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;
103
#endif
104 105 106 107 108 109 110 111 112 113 114

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
115
#ifndef LITE_SHUTDOWN_LOG
116 117
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
118
#endif
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, scale_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, scale_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, align_delta);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
152
#ifndef LITE_SHUTDOWN_LOG
153 154
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
155
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  }

 protected:
  param_t* bilinear_interp_param_{nullptr};
  std::string kernel_func_name_{"bilinear_interp"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(bilinear_interp,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::BilinearInterpImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();