increment_compute_test.cc 2.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
19
#include "lite/tests/utils/fill_data.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace lite {

class IncrementComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "x";
  std::string output_ = "out";
  float step_ = 1.f;
  DDim dims_{{3, 5, 4, 4}};
  bool bias_after_scale_;

 public:
  IncrementComputeTester(const Place& place,
                         const std::string& alias,
                         float step,
                         DDim dims)
      : TestCase(place, alias), step_(step), dims_(dims) {}

  void RunBaseline(Scope* scope) override {
    auto* out = scope->NewTensor(output_);
    CHECK(out);
    out->Resize(dims_);
    auto* out_data = out->mutable_data<float>();

    auto* x = scope->FindTensor(input_);
    const auto* x_data = x->data<float>();
    int n = dims_.production();
    for (int i = 0; i < n; i++) {
      out_data[i] = x_data[i] + step_;
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("increment");
    op_desc->SetInput("X", {input_});
    op_desc->SetOutput("Out", {output_});
    op_desc->SetAttr("step", step_);
  }

  void PrepareData() override {
62 63 64
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -5.f, 5.f, dims_.production());
    SetCommonTensor(input_, dims_, din.data());
Y
Yan Chunwei 已提交
65 66
  }
};
67 68

void test_increment(Place place, float abs_error) {
69 70
  std::vector<std::vector<int64_t>> x_dims{{3, 5, 4, 4}, {3, 5}, {1}};
  for (auto dims : x_dims) {
Y
Yan Chunwei 已提交
71
    for (float step : {1, 2}) {
72 73 74
#if LITE_WITH_NPU
      if (dims.size() != 1) continue;
#endif
Y
Yan Chunwei 已提交
75
      std::unique_ptr<arena::TestCase> tester(
76
          new IncrementComputeTester(place, "def", step, DDim(dims)));
77
      arena::Arena arena(std::move(tester), place, abs_error);
Y
Yan Chunwei 已提交
78 79 80 81 82 83
      arena.TestPrecision();
    }
  }
}

TEST(Increment, precision) {
84 85
  Place place;
  float abs_error = 2e-5;
86 87 88 89 90
#if defined(LITE_WITH_NPU)
  place = TARGET(kNPU);
  abs_error = 1e-2;  // use fp16 in npu
#elif defined(LITE_WITH_ARM)
  place = TARGET(kARM);
91 92
#else
  return;
Y
Yan Chunwei 已提交
93
#endif
94 95

  test_increment(place, abs_error);
Y
Yan Chunwei 已提交
96 97 98 99
}

}  // namespace lite
}  // namespace paddle