test_inference_api.cpp 1.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include "io/paddle_inference_api.h"

using namespace paddle_mobile;

PaddleMobileConfig GetConfig() {
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kCPU;
  config.model_dir = "../models/mobilenet/";
  config.thread_num = 4;
  return config;
}

int main() {
  PaddleMobileConfig config = GetConfig();
  auto predictor =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config);

  float data[1 * 3 * 224 * 224] = {1.0f};

  PaddleTensor tensor;
  tensor.shape = std::vector<int>({1, 3, 224, 224});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::FLOAT32;
  std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);

  PaddleTensor tensor_out;
  tensor_out.shape = std::vector<int>({});
  tensor_out.data = PaddleBuf();
  tensor_out.dtype = PaddleDType::FLOAT32;
  std::vector<PaddleTensor> outputs(1, tensor_out);

L
liuruilong 已提交
49 50 51 52 53 54
  std::cout << " before predict " << std::endl;

  predictor->Run(paddle_tensor_feeds, &outputs);

  std::cout << " after predict " << std::endl;
  //  assert();
N
nhzlx 已提交
55 56 57 58 59 60 61 62

  float* data_o = static_cast<float*>(outputs[0].data.data());
  for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); ++j) {
    std::cout << "output[" << j << "]: " << data_o[j] << std::endl;
  }

  return 0;
}