test_fusion_fc_op.cpp 5.7 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <framework/program/program-optimize/program_optimize.h>
#include "../test_include.h"
#include "operators/fusion_fc_op.h"

namespace paddle_mobile {
namespace framework {

template <typename Dtype>
class TestFcOp {
 public:
  explicit TestFcOp(const Program<Dtype> p) : program_(p) {
    use_optimize_ = true;
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
    }

    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "fc" && op->Input("X")[0] == "pool2d_13.tmp_0") {
          DLOG << " fc attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Input Y is : " << op->Input("Y")[0];
          DLOG << " Input Y is : " << op->Input("Z")[0];
          DLOG << " Output Out is : " << op->Output("Out")[0];
L
liuruilong 已提交
50 51
          std::shared_ptr<operators::FusionFcOp<Dtype, float>> testOp =
              std::make_shared<operators::FusionFcOp<Dtype, float>>(
E
eclipsess 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(testOp);
        }
      }
    }
  }

  std::shared_ptr<Tensor> predict(const Tensor &t1, const Tensor &t2,
                                  const Tensor &t3) {
    // feed
    auto scope = program_.scope;
    Variable *x_feed_value = scope->Var("pool2d_13.tmp_0");
E
eclipsess 已提交
65
    auto tensor_x = x_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
66 67 68
    tensor_x->ShareDataWith(t1);

    Variable *y_feed_value = scope->Var("loss3_classifier-loc_weights");
E
eclipsess 已提交
69
    auto tensor_y = y_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
70 71 72
    tensor_y->ShareDataWith(t2);

    Variable *z_feed_value = scope->Var("loss3_classifier-loc_biases");
E
eclipsess 已提交
73
    auto tensor_z = z_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
74 75 76
    tensor_z->ShareDataWith(t3);

    Variable *con_output = scope->Var("loss3_classifier-loc.tmp_1");
E
eclipsess 已提交
77
    auto *output_tensor = con_output->GetMutable<LoDTensor>();
E
eclipsess 已提交
78 79 80 81
    output_tensor->mutable_data<float>({3, 10});
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

E
eclipsess 已提交
82
    std::shared_ptr<LoDTensor> out_tensor = std::make_shared<LoDTensor>();
E
eclipsess 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    out_tensor.reset(output_tensor);

    predict(t1, t2, t3, 0);
    return out_tensor;
  }

 private:
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict(const Tensor &t1, const Tensor &t2, const Tensor &t3,
               int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
    }
  }
};

template class TestFcOp<CPU>;
}  // namespace framework
}  // namespace paddle_mobile
int main() {
  DLOG << "----------**********----------";
  DLOG << "begin to run Fc Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  //    "../../../test/models/googlenet"
L
liuruilong 已提交
117
  auto program = loader.Load(g_googlenet);
E
eclipsess 已提交
118 119
  paddle_mobile::framework::ProgramOptimize optimize;
  //  program.originProgram->Description("origin");
L
liuruilong 已提交
120
  auto optimize_program = optimize.FusionOptimize(program.originProgram);
E
eclipsess 已提交
121 122 123 124 125 126 127 128 129 130

  program.optimizeProgram = optimize_program;

  if (optimize_program != nullptr) {
    optimize_program->Description("optimize");
  } else {
    LOG(paddle_mobile::kLOG_ERROR) << "optimize_program is null";
  }

  /// input x (1,3,224,224)
E
eclipsess 已提交
131
  paddle_mobile::framework::LoDTensor inputx;
E
eclipsess 已提交
132 133 134 135
  SetupTensor<float>(&inputx, {3, 64, 1, 1}, static_cast<float>(1),
                     static_cast<float>(1));
  auto *inputx_ptr = inputx.data<float>();
  /// input y (224,)
E
eclipsess 已提交
136
  paddle_mobile::framework::LoDTensor inputy;
E
eclipsess 已提交
137 138 139 140
  SetupTensor<float>(&inputy, {64, 10}, static_cast<float>(1.5),
                     static_cast<float>(1.5));
  auto *inputy_ptr = inputy.data<float>();

E
eclipsess 已提交
141
  paddle_mobile::framework::LoDTensor inputz;
E
eclipsess 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  SetupTensor<float>(&inputz, {10}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputz_ptr = inputz.data<float>();

  paddle_mobile::framework::TestFcOp<paddle_mobile::CPU> testFcOp(program);

  auto output = testFcOp.predict(inputx, inputy, inputz);
  auto *output_ptr = output->data<float>();
  for (int j = 0; j < output->numel(); ++j) {
    DLOG << "value of output: " << output_ptr[j];
  }

  DLOG << "1 (3,64) * 2 (64,10) = 96(3,10)";
  DLOG << "output : 96(3,10) + bias(10)";

  return 0;
}