nearest_interp_image_compute_test.cc 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/image_helper.h"

namespace paddle {
namespace lite {

template <typename dtype>
void nearest_interp_compute_ref(const dtype *src,
                                int w_in,
                                int h_in,
                                dtype *dst,
                                int w_out,
                                int h_out,
                                float scale_x,
                                float scale_y,
                                bool with_align = false) {
  float scale_w_new = (with_align)
                          ? (static_cast<float>(w_in - 1) / (w_out - 1))
                          : (static_cast<float>(w_in) / (w_out));
  float scale_h_new = (with_align)
                          ? (static_cast<float>(h_in - 1) / (h_out - 1))
                          : (static_cast<float>(h_in) / (h_out));
  if (with_align) {
    for (int h = 0; h < h_out; ++h) {
      dtype *dst_p = dst + h * w_out;
      int near_y = static_cast<int>(scale_h_new * h + 0.5);
      for (int w = 0; w < w_out; ++w) {
        int near_x = static_cast<int>(scale_w_new * w + 0.5);
        *dst_p++ = src[near_y * w_in + near_x];
      }
    }
  } else {
    for (int h = 0; h < h_out; ++h) {
      dtype *dst_p = dst + h * w_out;
      int near_y = static_cast<int>(scale_h_new * h);
      for (int w = 0; w < w_out; ++w) {
        int near_x = static_cast<int>(scale_w_new * w);
        *dst_p++ = src[near_y * w_in + near_x];
      }
    }
  }
}
// #define LOOP_TEST
// #define PRINT_RESULT
63
TEST(nearest_interp_image2d, compute) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> "
               "nearest_interp(img) -> "
               "layout(img2buf) "
               "-> host";

#ifdef LOOP_TEST
  for (int n : {1, 3}) {
    for (auto c : {1, 3}) {
      for (int h : {12, 20, 50, 112}) {
        for (int w : {12, 20, 50, 112}) {
          for (int out_h : {36, 60, 90, 224}) {
            for (int out_w : {36, 60, 90, 224}) {
              if (out_w < w || out_h < h) {
                continue;
              }
#else
  const int n = 1;
  const int c = 2;
  const int h = 3;
  const int w = 4;
  const int out_h = 6;
  const int out_w = 8;
#endif  // LOOP_TEST

              float scale_x = out_w / w;
              float scale_y = out_h / h;

              LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c
                        << " " << h << " " << w << " ========" << out_h << " "
                        << out_w;
              // set layout kernels
              auto buf_to_img_kernels =
                  KernelRegistry::Global().Create("layout",
                                                  TARGET(kOpenCL),
                                                  PRECISION(kAny),
                                                  DATALAYOUT(kImageDefault));
              auto img_to_buf_kernels =
                  KernelRegistry::Global().Create("layout",
                                                  TARGET(kOpenCL),
                                                  PRECISION(kAny),
                                                  DATALAYOUT(kNCHW));
              auto nearest_interp_img_kernels =
                  KernelRegistry::Global().Create("nearest_interp",
                                                  TARGET(kOpenCL),
108
                                                  PRECISION(kFP16),
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                                                  DATALAYOUT(kImageDefault));
              ASSERT_FALSE(buf_to_img_kernels.empty());
              ASSERT_FALSE(buf_to_img_kernels.empty());
              ASSERT_FALSE(nearest_interp_img_kernels.empty());

              auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
              auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
              auto nearest_interp_img_kernel =
                  std::move(nearest_interp_img_kernels.front());
              LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
              LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
              LOG(INFO) << "get 3rd kernel: "
                        << nearest_interp_img_kernel->doc();

              // set tensors about op param
              LOG(INFO) << "set tensors about op param";
              // layout(buf->img): x -> nearest_interp_in
              // nearest_interp(img): nearest_interp_in -> nearest_interp_out
              // layout(img->buf): nearest_interp_out -> y
              lite::Tensor x, y, nearest_interp_in, nearest_interp_out, y_ref;
              operators::LayoutParam BufferToImageParam;
              operators::LayoutParam ImageToBufferParam;
              BufferToImageParam.x = &x;
              BufferToImageParam.y = &nearest_interp_in;
              ImageToBufferParam.x = &nearest_interp_out;
              ImageToBufferParam.y = &y;
              operators::InterpolateParam NearestInterpParam;
              NearestInterpParam.X = &nearest_interp_in;
              NearestInterpParam.Out = &nearest_interp_out;
              NearestInterpParam.out_h = out_h;
              NearestInterpParam.out_w = out_w;

              const DDim x_dim =
                  DDim(std::vector<DDim::value_type>{n, c, h, w});
              const DDim y_dim =
                  DDim(std::vector<DDim::value_type>{n, c, out_h, out_w});
              x.Resize(x_dim);
              y.Resize(y_dim);
              nearest_interp_in.Resize(x_dim);
              nearest_interp_out.Resize(y_dim);
              y_ref.Resize(y_dim);
              auto nearest_interp_image2d_shape =
                  paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);

              // initialize tensors
              LOG(INFO) << "initialize tensors";
              auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
              auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
              auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
              auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
                  x_data, 0, sizeof(float) * x_dim.production()));
              auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
                  y_data, 0, sizeof(float) * y_dim.production()));
              for (int i = 0; i < x_dim.production(); ++i) {
                mapped_x[i] = static_cast<int>(i) - x_dim.production() / 2;
              }
              for (int i = 0; i < y_dim.production(); ++i) {
                mapped_y[i] = static_cast<int>(0);
              }
              auto *nearest_interp_in_data =
169
                  nearest_interp_in.mutable_data<half_t, cl::Image2D>(
170 171 172
                      nearest_interp_image2d_shape["width"],
                      nearest_interp_image2d_shape["height"]);
              auto *nearest_interp_out_data =
173
                  nearest_interp_out.mutable_data<half_t, cl::Image2D>(
174
                      y_dim[3], y_dim[2]);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

              // set context and kernel args
              LOG(INFO) << "set context and kernel args";
              std::unique_ptr<KernelContext> context(new KernelContext);
              context->As<OpenCLContext>().InitOnce();

              buf_to_img_kernel->SetParam(BufferToImageParam);
              std::unique_ptr<KernelContext> buf_to_img_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(buf_to_img_context->As<OpenCLContext>()));
              buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

              img_to_buf_kernel->SetParam(ImageToBufferParam);
              std::unique_ptr<KernelContext> img_to_buf_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(img_to_buf_context->As<OpenCLContext>()));
              img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

              nearest_interp_img_kernel->SetParam(NearestInterpParam);
              std::unique_ptr<KernelContext> nearest_interp_img_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(nearest_interp_img_context->As<OpenCLContext>()));
              nearest_interp_img_kernel->SetContext(
                  std::move(nearest_interp_img_context));

              // run kernels
              LOG(INFO) << "run kernel: buf_to_img_kernel";
              buf_to_img_kernel->Launch();
              LOG(INFO) << "run kernel: nearest_interp_img_kernel";
              nearest_interp_img_kernel->Launch();
              LOG(INFO) << "run kernel: img_to_buf_kernel";
              img_to_buf_kernel->Launch();

X
xiebaiyuan 已提交
211
              CLRuntime::Global()->command_queue().finish();
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
              // compute ref cpu
              for (int nid = 0; nid < x_dim[0]; ++nid) {
                for (int cid = 0; cid < x_dim[1]; ++cid) {
                  float *x_nc =
                      mapped_x + (nid * x_dim[1] + cid) * x_dim[3] * x_dim[2];
                  float *y_nc =
                      y_data_ref + (nid * x_dim[1] + cid) * y_dim[3] * y_dim[2];
                  nearest_interp_compute_ref<float>(x_nc,
                                                    x_dim[3],
                                                    x_dim[2],
                                                    y_nc,
                                                    y_dim[3],
                                                    y_dim[2],
                                                    1 / scale_x,
                                                    1 / scale_y);
                }
              }
// result
#ifdef PRINT_RESULT
              LOG(INFO) << "---- print kernel result (input -> output) ----";
              for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
                std::cout << mapped_x[eidx] << " ";
              }
              std::cout << std::endl;
              for (int eidx = 0; eidx < y_dim.production(); ++eidx) {
                std::cout << mapped_y[eidx] << " ";
              }
              std::cout << std::endl;
              for (int eidx = 0; eidx < y_dim.production(); ++eidx) {
                std::cout << y_data_ref[eidx] << " ";
              }
              std::cout << std::endl;
#endif  // PRINT_RESULT

              // check result: compare kernel output and cpu output(y_data_ref)
              for (int eidx = 0; eidx < y_dim.production(); eidx++) {
                EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-6);
                if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-6) {
                  LOG(FATAL) << "1st diff in this case at eidx[from 0]:" << eidx
                             << " / " << x_dim.production() << ", y_data_ref["
                             << eidx << "]:" << y_data_ref[eidx]
                             << ", mapped_y[" << eidx << "]:" << mapped_y[eidx];
                  break;
                }
              }

              // free
              LOG(INFO) << "free: unmap x, y";
              TargetWrapperCL::Unmap(x_data, mapped_x);
              TargetWrapperCL::Unmap(y_data, mapped_y);
#ifdef LOOP_TEST
            }
          }
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}

}  // namespace lite
}  // namespace paddle

// nearest_interp image2d fp32
USE_LITE_KERNEL(layout, kOpenCL, kAny, kImageDefault, NCHW_to_ImageDefault);
USE_LITE_KERNEL(layout, kOpenCL, kAny, kNCHW, ImageDefault_to_NCHW);

// nearest_interp image2d fp16
USE_LITE_KERNEL(nearest_interp, kOpenCL, kFP16, kImageDefault, ImageDefault);