context.h 13.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "lite/utils/any.h"
#ifdef LITE_WITH_CUDA
19 20
#include "lite/backends/cuda/blas.h"
#include "lite/backends/cuda/cuda_utils.h"
Y
Yan Chunwei 已提交
21 22 23
#endif
#ifdef LITE_WITH_OPENCL
#include <unordered_map>
24 25
#include "lite/backends/opencl/cl_context.h"
#include "lite/backends/opencl/cl_runtime.h"
Y
Yan Chunwei 已提交
26
#endif
27 28 29
#ifdef LITE_WITH_XPU
#include "lite/backends/xpu/xpu_header_sitter.h"
#endif
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36

#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
37
#include "lite/core/device_info.h"
Y
Yan Chunwei 已提交
38 39 40
#include "lite/core/target_wrapper.h"
#include "lite/core/tensor.h"
#include "lite/utils/all.h"
41
#include "lite/utils/env.h"
Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49 50 51 52 53

namespace paddle {
namespace lite {

template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;
using NPUContext = Context<TargetType::kNPU>;
54
using XPUContext = Context<TargetType::kXPU>;
Y
Yan Chunwei 已提交
55 56
using OpenCLContext = Context<TargetType::kOpenCL>;
using FPGAContext = Context<TargetType::kFPGA>;
57
using BMContext = Context<TargetType::kBM>;
58
using MLUContext = Context<TargetType::kMLU>;
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};

#ifdef LITE_WITH_NPU
template <>
class Context<TargetType::kNPU> {
 public:
  Context() {}
  explicit Context(const NPUContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
  void CopySharedTo(NPUContext* ctx) {}

  NPUContext& operator=(const NPUContext& ctx) {}
  std::string name() const { return "NPUContext"; }
};
#endif

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#ifdef LITE_WITH_BM
template <>
class Context<TargetType::kBM> {
 public:
  Context() {}
  explicit Context(const BMContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { Init(0); }

  void Init(int dev_id) { TargetWrapperBM::SetDevice(dev_id); }
  void CopySharedTo(BMContext* ctx) {}
  void* GetHandle() { return TargetWrapperBM::GetHandle(); }

  std::string name() const { return "BMContext"; }
};
#endif

103 104 105 106 107
#ifdef LITE_WITH_XPU
template <>
class Context<TargetType::kXPU> {
 public:
  Context() {}
108
  explicit Context(const XPUContext& ctx);
109

110 111
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
112

113 114
  void CopySharedTo(XPUContext* ctx) {}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  static xdnn::Context* GetRawContext() {
    if (_tls_raw_ctx == nullptr) {
      _tls_raw_ctx = xdnn::create_context();
      CHECK(_tls_raw_ctx);
    }
    return _tls_raw_ctx;
  }

  static void SetWorkspaceL3Size(int l3_size = 0xfffc00) {
    xdnn::set_workspace_l3_size(GetRawContext(), l3_size);
  }

  static void SetDev(int dev_no = 0) {
    const char* dev_env = getenv("LITE_XPU_DEV");
    if (dev_env) {
      xpu_set_device(atoi(dev_env));
      return;
    }

    xpu_set_device(dev_no);
  }

137
  std::string name() const { return "XPUContext"; }
138 139 140

 private:
  static thread_local xdnn::Context* _tls_raw_ctx;
141 142 143
};
#endif

Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifdef LITE_WITH_ARM
template <>
class Context<TargetType::kARM> {
 public:
  Context() {}
  explicit Context(const ARMContext& ctx);

  ARMContext& operator=(const ARMContext& ctx) {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { DeviceInfo::Init(); }

  void CopySharedTo(ARMContext* ctx) {}

158
  void SetRunMode(lite_api::PowerMode mode, int threads) {
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165
    return DeviceInfo::Global().SetRunMode(mode, threads);
  }
  void SetCache(int l1size, int l2size, int l3size) {
    return DeviceInfo::Global().SetCache(l1size, l2size, l3size);
  }
  void SetArch(ARMArch arch) { return DeviceInfo::Global().SetArch(arch); }

166
  lite_api::PowerMode mode() const { return DeviceInfo::Global().mode(); }
Y
Yan Chunwei 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  int threads() const { return DeviceInfo::Global().threads(); }
  ARMArch arch() const { return DeviceInfo::Global().arch(); }
  int l1_cache_size() const { return DeviceInfo::Global().l1_cache_size(); }
  int l2_cache_size() const { return DeviceInfo::Global().l2_cache_size(); }
  int l3_cache_size() const { return DeviceInfo::Global().l3_cache_size(); }
  int llc_size() const { return DeviceInfo::Global().llc_size(); }
  bool has_dot() const { return DeviceInfo::Global().has_dot(); }
  bool has_fp16() const { return DeviceInfo::Global().has_fp16(); }

  template <typename T>
  T* workspace_data() {
    return DeviceInfo::Global().workspace_data<T>();
  }

  bool ExtendWorkspace(size_t size) {
    return DeviceInfo::Global().ExtendWorkspace(size);
  }

  std::string name() const { return "ARMContext"; }
};
#endif

#ifdef LITE_WITH_FPGA
// TODO(tianxiaogang): add needed implementation to context
template <>
class Context<TargetType::kFPGA> {
 public:
  Context() {}
  void InitOnce() {}

  FPGAContext& operator=(const FPGAContext& ctx) {}

  void CopySharedTo(FPGAContext* ctx) {}

  std::string name() const { return "FPGAContext"; }
};
#endif

#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
template <>
class Context<TargetType::kCUDA> {
 public:
210 211
  typename Env<TargetType::kCUDA>::Devs& devs =
      Env<TargetType::kCUDA>::Global();
Y
Yan Chunwei 已提交
212 213
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
214 215 216 217 218
    if (devs.size() > 0) {
      cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
    } else {
      LOG(INFO) << "No cuda device(s) found, CUDAContext init failed.";
    }
Y
Yan Chunwei 已提交
219
  }
220
  void Init(int dev_id, int exec_stream_id = 0, int io_stream_id = 0) {
221
    CHECK_GT(devs.size(), 0UL)
222
        << "Env is not initialized or current target is not exit!";
223
    if (dev_id >= static_cast<int>(devs.size())) {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      LOG(WARNING) << "device index exceeds the number of devices, set to "
                      "default device(0)!";
      device_id_ = 0;
    } else {
      device_id_ = dev_id;
    }
    if (io_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "data stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      io_stream_id = 0;
    }
    if (exec_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "exec stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      exec_stream_id = 0;
    }
Y
Yan Chunwei 已提交
240

241 242 243 244 245 246
    exec_stream_ = devs[dev_id].exec_streams()[exec_stream_id];
    io_stream_ = devs[dev_id].io_streams()[io_stream_id];

    exec_stream_id_ = exec_stream_id;
    io_stream_id_ = io_stream_id;
  }
Y
Yan Chunwei 已提交
247 248 249 250 251 252
  void CopySharedTo(CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

253
  const cudaStream_t& exec_stream() const { return exec_stream_; }
Y
Yan Chunwei 已提交
254 255
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

256
  const cudaStream_t& io_stream() const { return io_stream_; }
Y
Yan Chunwei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

W
Wilber 已提交
278 279 280 281 282 283 284
  CUDAContext& operator=(const CUDAContext& context) {
    this->Init(
        context.device_id_, context.exec_stream_id_, context.io_stream_id_);
    cublas_fp32_ = const_cast<CUDAContext&>(context).cublas_fp32();
    return *this;
  }

Y
Yan Chunwei 已提交
285
 private:
286
  int device_id_;
Y
Yan Chunwei 已提交
287
  // overall information
288 289
  int exec_stream_id_;
  int io_stream_id_;
Y
Yan Chunwei 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;

  // not thread-safe, should allocate for each thread.
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;

  // kernel information
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
};
#endif

#ifdef LITE_WITH_X86
template <>
class Context<TargetType::kX86> {
 public:
  Context() {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(X86Context* ctx) {}

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
  // kernel information
};
#endif

#ifdef LITE_WITH_OPENCL
template <>
class Context<TargetType::kOpenCL> {
  std::shared_ptr<CLContext> cl_context_;
  using WaitListType =
327
      std::unordered_map<decltype(static_cast<const void*>(nullptr)),
Y
Yan Chunwei 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
                         std::shared_ptr<cl::Event>>;
  std::shared_ptr<WaitListType> cl_wait_list_;

 public:
  CLContext* cl_context() { return cl_context_.get(); }
  WaitListType* cl_wait_list() { return cl_wait_list_.get(); }

  void InitOnce() {
    // Init cl runtime.
    CHECK(CLRuntime::Global()->IsInitSuccess()) << "OpenCL runtime init failed";

    cl_context_ = std::make_shared<CLContext>();
    cl_wait_list_ = std::make_shared<WaitListType>();
  }

  void CopySharedTo(OpenCLContext* ctx) {
    ctx->cl_context_ = cl_context_;
    ctx->cl_wait_list_ = cl_wait_list_;
  }
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
    }
    return *ctx_.get_mutable<ContextT>();
  }

 private:
  Any ctx_;
};

// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopySharedTo(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopySharedTo(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
388 389 390 391
      case TARGET(kCUDA): {
        int dev_id = TargetWrapper<TargetType::kCUDA>::GetCurDevice();
        auto& context = ctx->As<CUDAContext>();
        context.Init(dev_id);
Y
Yan Chunwei 已提交
392
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopySharedTo(
393 394
            &context);
      } break;
Y
Yan Chunwei 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopySharedTo(
            &ctx->As<ARMContext>());
        break;
#endif
#ifdef LITE_WITH_NPU
      case TARGET(kNPU):
        kernel_contexts_[TargetType::kNPU].As<NPUContext>().CopySharedTo(
            &ctx->As<NPUContext>());
        break;
#endif
408 409 410 411 412 413
#ifdef LITE_WITH_XPU
      case TARGET(kXPU):
        kernel_contexts_[TargetType::kXPU].As<XPUContext>().CopySharedTo(
            &ctx->As<XPUContext>());
        break;
#endif
Y
Yan Chunwei 已提交
414 415 416 417 418 419 420 421 422 423 424
#ifdef LITE_WITH_OPENCL
      case TARGET(kOpenCL):
        kernel_contexts_[TargetType::kOpenCL].As<OpenCLContext>().CopySharedTo(
            &ctx->As<OpenCLContext>());
        break;
#endif
#ifdef LITE_WITH_FPGA
      case TARGET(kFPGA):
        kernel_contexts_[TargetType::kFPGA].As<FPGAContext>().CopySharedTo(
            &ctx->As<FPGAContext>());
        break;
425 426 427 428 429 430
#endif
#ifdef LITE_WITH_BM
      case TARGET(kBM):
        kernel_contexts_[TargetType::kBM].As<BMContext>().CopySharedTo(
            &ctx->As<BMContext>());
        break;
Y
Yan Chunwei 已提交
431 432
#endif
      default:
433
#if (!defined LITE_ON_MODEL_OPTIMIZE_TOOL) && (!defined LITE_WITH_PYTHON)
Y
Yan Chunwei 已提交
434
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
435 436
#endif
        break;
Y
Yan Chunwei 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
#ifdef LITE_WITH_OPENCL
    InitContext<TargetType::kOpenCL, OpenCLContext>();
#endif
#ifdef LITE_WITH_FPGA
    InitContext<TargetType::kFPGA, FPGAContext>();
#endif
#ifdef LITE_WITH_NPU
    InitContext<TargetType::kNPU, NPUContext>();
466 467 468
#endif
#ifdef LITE_WITH_XPU
    InitContext<TargetType::kXPU, XPUContext>();
469 470 471
#endif
#ifdef LITE_WITH_BM
    InitContext<TargetType::kBM, BMContext>();
Y
Yan Chunwei 已提交
472 473 474 475 476 477 478 479 480
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

}  // namespace lite
}  // namespace paddle