conv_bn_relu_kernel.cpp 7.0 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"
18
#include <cmath>
Y
yangfei 已提交
19 20

namespace paddle_mobile {
Y
yangfei 已提交
21
namespace operators {
Y
yangfei 已提交
22

Y
yangfei 已提交
23 24 25
template <>
bool ConvBNReluKernel<GPU_CL, float>::Init(
    FusionConvBNReluParam<GPU_CL> *param) {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");
  const framework::CLImage *mean = param->InputMean();
  const framework::CLImage *variance = param->InputVariance();
  const framework::CLImage *scale = param->InputScale();
  const framework::CLImage *bias = param->InputBias();
  const float epsilon = param->Epsilon();

  const int C = mean->numel();

  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  float inv_std_ptr[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
  float *new_scale_ptr = new float[C];
  float *new_bias_ptr = new float[C];

  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
  }

  framework::CLImage *new_scale = new framework::CLImage();

  //  for (int j = 0; j < C; ++j) {
  //    DLOG << " new scale - " << j << new_scale_ptr[j];
  //  }
  //
  //  for (int j = 0; j < C; ++j) {
  //    DLOG << " new bias - " << j << new_bias_ptr[j];
  //  }

  new_scale->SetTensorData(new_scale_ptr, variance->dims());
  new_scale->InitCLImage(this->cl_helper_.CLContext(),
                         cl_helper_.CLCommandQueue());

  //  DLOG << " climage - y bias: " << *(param->Bias());
  //
  //  DLOG << " climage - new scale: " << *new_scale;

  framework::CLImage *new_bias = new framework::CLImage();

  new_bias->SetTensorData(new_bias_ptr, variance->dims());
  new_bias->InitCLImage(this->cl_helper_.CLContext(),
                        cl_helper_.CLCommandQueue());

  //  DLOG << " climage - new bias: " << *new_bias;
  //
  //  DLOG << " climage - filter: " << *(param->Filter());

  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

  delete[](new_scale_ptr);
  delete[](new_bias_ptr);

  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);

  param->SetOffset(offset);

  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
    this->cl_helper_.AddKernel("conv_1x1", "conv_bn_relu_kernel.cl");
    DLOG << " conv bn relu conv 1x1";
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_bn_relu_kernel.cl");
    DLOG << " conv bn relu depth_conv_3x3";

  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());

    this->cl_helper_.AddKernel("conv_3x3", "conv_bn_relu_kernel.cl");
    DLOG << " conv bn relu conv_3x3";
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
Y
yangfei 已提交
123 124
  return true;
}
Y
yangfei 已提交
125

Y
yangfei 已提交
126 127
template <>
void ConvBNReluKernel<GPU_CL, float>::Compute(
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    const FusionConvBNReluParam<GPU_CL> &param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  auto new_scale = param.NewScale()->GetCLImage();
  auto new_bias = param.NewBias()->GetCLImage();
  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];

  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &new_scale);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_bias);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 8, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 9, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 10, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 11, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 12, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 13, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 14, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 15, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  status = clEnqueueNDRangeKernel(
      this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
      default_work_size.data(), NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
}
Y
yangfei 已提交
205
template class ConvBNReluKernel<GPU_CL, float>;
Y
yangfei 已提交
206

Y
yangfei 已提交
207
}  // namespace operators
Y
yangfei 已提交
208 209 210
}  // namespace paddle_mobile

#endif