tanh_kernel.cpp 2.5 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#ifdef TANH_OP
Z
zhangyang 已提交
16

Z
zhangyang 已提交
17
#include "operators/kernel/tanh_kernel.h"
qnqinan's avatar
qnqinan 已提交
18
#include <math.h>
Z
zhangyang 已提交
19 20 21 22
namespace paddle_mobile {
namespace operators {

template <>
Z
zhangyang 已提交
23
bool TanhKernel<FPGA, float>::Init(TanhParam<FPGA> *param) {
qnqinan's avatar
qnqinan 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  auto input = const_cast<Tensor *>(param->InputX());
  auto input_ptr = input->data<float>();
  auto float_input = new Tensor;
  float_input->mutable_data<float>(
      {1, input->dims()[1], input->dims()[2], input->dims()[3]});
  fpga::format_fp32_ofm(float_input);

  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_CHW;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input_ptr;
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = float_input->data<float>();
  args.output.scale_address = float_input->scale;
  param->SetFloatInput(float_input);
  param->SetFpgaArgs(args);
Z
zhangyang 已提交
44 45 46
  return true;
}

qnqinan's avatar
qnqinan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#define EXP_MAX_INPUT 40.0
template <typename T>
T Tanh(const T a) {
  T tmp = -2.0 * a;
  tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
  return (2.0 / (1.0 + exp(tmp))) - 1.0;
}
template <typename T>
void tanhFuntor(Tensor *input, Tensor *output) {
  auto *input_ptr = input->data<T>();
  auto *output_ptr = output->mutable_data<T>();
  for (int i = 0; i < input->numel(); i++) {
    *(output_ptr + i) = Tanh<T>(*(input_ptr + i));
  }
}
Z
zhangyang 已提交
62
template <>
qnqinan's avatar
qnqinan 已提交
63 64 65 66 67 68 69 70 71 72
void TanhKernel<FPGA, float>::Compute(const TanhParam<FPGA> &param) {
  Tensor *in_x = param.FloatInput();
  Tensor *out = param.Out();

  fpga::PerformBypass(param.FpgaArgs());
  fpga::fpga_invalidate((void *)in_x->data<float>(),
                        in_x->numel() * sizeof(float));
  tanhFuntor<float>(in_x, out);
  fpga::fpga_flush(out->data<float>(), out->memory_size());
}
Z
zhangyang 已提交
73 74 75 76 77

}  // namespace operators
}  // namespace paddle_mobile

#endif