gemm.h 7.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaojiaying01 已提交
14 15

#pragma once
16 17
#include <string>
#include "common/log.h"
Z
zhaojiaying01 已提交
18

Z
zhaojiaying01 已提交
19 20 21 22
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
Z
zhaojiaying01 已提交
23

Z
zhaojiaying01 已提交
24 25 26 27
#if __aarch64__
#define MR 6
#define NR 16
#else
Z
zhaojiaying01 已提交
28
#define MR 6
29
#define NR 8
Z
zhaojiaying01 已提交
30
#endif
Z
zhaojiaying01 已提交
31

W
wangliu 已提交
32
#define s_min(i, j) ((i) < (j) ? (i) : (j))
Z
zhaojiaying01 已提交
33 34 35 36 37

namespace paddle_mobile {
namespace operators {
namespace math {

38
/*
Z
zhaojiaying01 已提交
39 40 41 42 43 44 45
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
                 float *buffer);

// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
                 float *buffer);
46
*/
Z
zhaojiaying01 已提交
47 48

// 将 A 矩阵分块复制到连续内存(RowMajor)
Z
zhaojiaying01 已提交
49 50 51 52
void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
                    float *buffer);
void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
                    float *buffer);
Z
zhaojiaying01 已提交
53 54
void PackMatrixA_8r(int m, int k, int m_tail, const float *A, int lda,
                    float *buffer);
55 56 57 58
void PackMatrixA_omp_6r(int m, int k, int m_tail, const float *A, int lda,
                        float *buffer);
void PackMatrixA_omp_8r(int m, int k, int m_tail, const float *A, int lda,
                        float *buffer);
Z
zhaojiaying01 已提交
59 60

// 将 B 矩阵分块复制到连续内存(RowMajor)
Z
zhaojiaying01 已提交
61 62
void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
                    float *buffer);
Z
zhaojiaying01 已提交
63 64 65 66
void PackMatrixB_12c(int k, int n, int n_tail, const float *B, int ldb,
                     float *buffer);
void PackMatrixB_16c(int k, int n, int n_tail, const float *B, int ldb,
                     float *buffer);
67 68 69 70 71 72
void PackMatrixB_omp_8c(int k, int n, int n_tail, const float *B, int ldb,
                        float *buffer);
void PackMatrixB_omp_12c(int k, int n, int n_tail, const float *B, int ldb,
                         float *buffer);
void PackMatrixB_omp_16c(int k, int n, int n_tail, const float *B, int ldb,
                         float *buffer);
Z
zhaojiaying01 已提交
73 74 75 76

// 分块矩阵乘法
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
                 float beta, float *c, float *C, int ldc, bool relu);
77 78 79
void InnerKernelWithBias(int mc, int nc, float alpha, const float *a,
                         const float *b, float beta, float *c, float *C,
                         int ldc, bool relu, float *bias);
Z
zhaojiaying01 已提交
80 81 82 83

void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
                       const float *b, float beta, float *c, float *C, int ldc,
                       bool relu, float *new_scale, float *new_bias);
84 85 86
void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
                          float *c, float *C, int ldc, float *p,
                          std::string mode, float *bias, float *bias1);
87
/*
Z
zhaojiaying01 已提交
88 89 90 91 92 93 94 95
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
                  const float *B, int ldb, float beta, float *C, int ldc,
                  bool relu);

void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
                        int lda, const float *B, int ldb, float beta, float *C,
                        int ldc, bool relu, float *new_scale, float *new_bias);
96
*/
Z
zhaojiaying01 已提交
97 98 99 100

// 计算一个更小的 C 矩阵分块
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
Z
zhaojiaying01 已提交
101
void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
Z
zhaojiaying01 已提交
102 103
void AddDot8x12(int k, const float *a, const float *b, float *c, int ldc);
void AddDot6x16(int k, const float *a, const float *b, float *c, int ldc);
Z
zhaojiaying01 已提交
104 105 106 107 108 109 110 111

// 分块矩阵乘法结果回写
// C = A * B
void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C
void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
112 113
// C = A * B + bias
void WriteWithAddV1(int mc, int nc, float *c, float *C, int ldc, float *bias);
Z
zhaojiaying01 已提交
114 115
// C = A * B + C, relu(C)
void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
116 117 118
// C = A * B + C,prelu(C)
void WriteWithAddPRelu(int mc, int nc, float *c, float *C, int ldc, float *p,
                       std::string mode, float *bias, float *bias1);
119 120 121
// C = A * B + bias ,relu(C)
void WriteWithAddReluV1(int mc, int nc, float *c, float *C, int ldc,
                        float *bias);
Z
zhaojiaying01 已提交
122 123 124 125 126 127 128
// C = A * B, batchnorm(C)
void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
                 float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
                     float *new_scale, float *new_bias);

129
/*
Z
zhaojiaying01 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// 向量矩阵乘法结果回写
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
// C = A * B + C
void VecWriteWithAdd(int n, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
                    float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
                        float *new_bias);
145
*/
Z
zhaojiaying01 已提交
146 147 148

// 32位 float 矩阵乘法
void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
149 150
           const float *B, int ldb, float beta, float *C, int ldc, bool relu,
           float *bias);
Z
zhaojiaying01 已提交
151 152 153 154 155 156

// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
                 const float *B, int ldb, float beta, float *C, int ldc,
                 bool relu, float *new_scale, float *new_bias);

157 158 159 160
void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
                    const float *B, int ldb, float *C, int ldc, float *p,
                    std::string mode, float *bias, float *bias1);

161 162 163 164 165 166 167 168 169 170
// 32位 float 矩阵乘法(openmp 多线程版本)
void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
               const float *B, int ldb, float beta, float *C, int ldc,
               bool relu, float *bias);

// 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A, int lda,
                     const float *B, int ldb, float beta, float *C, int ldc,
                     bool relu, float *new_scale, float *new_bias);

171 172 173 174
void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
                        const float *B, int ldb, float *C, int ldc, float *p,
                        std::string mode, float *bias, float *bias1);

Z
zhaojiaying01 已提交
175 176 177
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile