conv_add_kernel.cpp 4.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
L
liuruilong 已提交
22
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam &param) const {
W
wangliu 已提交
23 24
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
W
wangliu 已提交
25 26
  Tensor bias = *param.Bias();
  int axis = param.Axis();
W
wangliu 已提交
27
  Tensor *output = param.Output();
L
liuruilong 已提交
28
  math::expand_bias(bias, axis, output->dims());
W
wangliu 已提交
29
  output->ShareDataWith(bias);
W
wangliu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
W
wangliu 已提交
50
      framework::flatten_to_2d(col_shape, data_dim + 1);
W
wangliu 已提交
51

L
liuruilong 已提交
52 53
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
W
wangliu 已提交
54 55 56 57 58 59 60 61 62
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
W
wangliu 已提交
63
      input->dims(), 1, static_cast<int>(input->dims().size()));
W
wangliu 已提交
64 65 66 67 68

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
W
wangliu 已提交
69 70
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
W
wangliu 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
W
wangliu 已提交
106
                          static_cast<float>(1));
W
wangliu 已提交
107 108 109 110 111 112 113 114 115
    }
  }
}
template class ConvAddKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif