executor.h 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <map>
W
wangliu 已提交
18
#include <memory>
19 20 21
#include <string>
#include <vector>
#include "common/types.h"
L
liuruilong 已提交
22
#include "framework/lod_tensor.h"
L
liuruilong 已提交
23
#include "framework/operator.h"
24
#include "framework/program/program.h"
L
liuruilong 已提交
25
#include "framework/tensor.h"
26 27 28

namespace paddle_mobile {

W
wangliu 已提交
29
template <typename Dtype = CPU, Precision P = Precision::FP32>
30
class Executor {
W
wangliu 已提交
31
 public:
32
  typedef typename PrecisionTrait<P>::ptype Ptype;
33 34 35 36 37 38 39 40 41 42
  // exector constructor
  // @param program program converted from proto program in PaddlePaddle
  // @param use_optimize bool whether use operator fusion to speed up or not
  // @param loddable bool
  Executor(const framework::Program<Dtype> program,
           const bool use_optimize = true,
	   const bool loddable = false);
  // predict with tensor
  // @param input input tensor to do prediction
  // @return predicted tensor
43
  std::shared_ptr<framework::Tensor> Predict(const framework::Tensor &t);
44 45 46
  // predict with lod tensor
  // @param input input lod tensor to do prediction
  // @return predicted lod tensor
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48
  std::shared_ptr<framework::LoDTensor> PredictLod(
      const framework::LoDTensor &t);
49 50 51 52 53 54
  // predict with vector input and dims
  // @param input vector whose elements will be formed
  // @param       input lod tensor to do prediction
  // @param dims  vector whose elements will be formed
  // @param       input tensor shape
  // @return vector which is flatted from predicted tensor
55 56 57
  std::vector<Ptype> Predict(const std::vector<Ptype> &input,
                             const std::vector<int64_t> &dims);

W
wangliu 已提交
58
 protected:
59 60
  Executor() = default;
  void InitMemory();
61 62 63
  void LoadMemory(const void* data,
		  const framework::VarDesc var_desc,
                  framework::LoDTensor *tensor);
L
liuruilong 已提交
64
  void InitCombineMemory();
65 66 67 68 69 70
  framework::Program<Dtype> program_;
  int batch_size_ = 1;
  std::shared_ptr<framework::ProgramDesc> to_predict_program_;
  std::shared_ptr<framework::Tensor> Predict(const framework::Tensor &t,
                                             int block_id);
  std::map<framework::BlockDesc,
W
wangliu 已提交
71 72
           std::vector<std::shared_ptr<framework::OperatorBase<Dtype>>>>
      ops_of_block_;
73
  bool use_optimize_ = false;
xiebaiyuan's avatar
xiebaiyuan 已提交
74
  bool loddable_ = false;
D
dolphin8 已提交
75 76 77 78 79 80 81
#ifdef PADDLE_MOBILE_PROFILE
  struct ProfInfo {
    int tid = 0;
    uint64_t runBegin = 0UL;
    uint64_t runEnd = 0UL;
  };
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
82 83 84 85

  bool varInputMemory(const std::shared_ptr<framework::VarDesc> &var_desc,
                      framework::Variable *var,
                      framework::LoDTensor *tensor) const;
86 87
};

W
wangliu 已提交
88
}  // namespace paddle_mobile