multiclass_nms_compute.cc 15.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18
#include "lite/kernels/host/multiclass_nms_compute.h"
#include <map>
#include <utility>
#include <vector>
Y
Yan Chunwei 已提交
19 20 21

namespace paddle {
namespace lite {
22 23
namespace kernels {
namespace host {
Y
Yan Chunwei 已提交
24

25 26 27
template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
Y
Yan Chunwei 已提交
28 29 30
  return pair1.first > pair2.first;
}

31 32 33 34 35 36
template <class T>
static void GetMaxScoreIndex(const std::vector<T>& scores,
                             const T threshold,
                             int top_k,
                             std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
Y
Yan Chunwei 已提交
37
    if (scores[i] > threshold) {
38
      sorted_indices->push_back(std::make_pair(scores[i], i));
Y
Yan Chunwei 已提交
39 40
    }
  }
41 42 43 44 45 46 47
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(),
                   sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
Y
Yan Chunwei 已提交
48 49 50
  }
}

51 52 53 54 55 56
template <class T>
static T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
Y
Yan Chunwei 已提交
57
  } else {
58 59
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
Y
Yan Chunwei 已提交
60
    if (normalized) {
61
      return w * h;
Y
Yan Chunwei 已提交
62
    } else {
63 64
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
Y
Yan Chunwei 已提交
65 66 67 68
    }
  }
}

69 70 71 72 73
template <class T>
static T JaccardOverlap(const T* box1, const T* box2, const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
Y
Yan Chunwei 已提交
74
  } else {
75 76 77 78 79 80 81 82 83 84 85
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
Y
Yan Chunwei 已提交
86 87 88
  }
}

89 90 91 92 93 94 95
template <class T>
T PolyIoU(const T* box1,
          const T* box2,
          const size_t box_size,
          const bool normalized) {
  LOG(FATAL) << "PolyIoU not implement.";
}
Y
Yan Chunwei 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
template <class T>
void SliceOneClass(const Tensor& items,
                   const int class_id,
                   Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>();
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int64_t class_num = items.dims()[1];
  if (items.dims().size() == 3) {
    int64_t item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
  }
}
Y
Yan Chunwei 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename T>
void NMSFast(const Tensor& bbox,
             const Tensor& scores,
             const T score_threshold,
             const T nms_threshold,
             const T eta,
             const int64_t top_k,
             std::vector<int>* selected_indices,
             const bool normalized) {
  // The total boxes for each instance.
  int64_t num_boxes = bbox.dims()[0];
  // 4: [xmin ymin xmax ymax]
  // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
  // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
  int64_t box_size = bbox.dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices;
  GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

  selected_indices->clear();
  T adaptive_threshold = nms_threshold;
  const T* bbox_data = bbox.data<T>();

  while (sorted_indices.size() != 0) {
    const int idx = sorted_indices.front().second;
Y
Yan Chunwei 已提交
146
    bool keep = true;
147
    for (size_t k = 0; k < selected_indices->size(); ++k) {
Y
Yan Chunwei 已提交
148
      if (keep) {
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        const int kept_idx = (*selected_indices)[k];
        T overlap = T(0.);
        // 4: [xmin ymin xmax ymax]
        if (box_size == 4) {
          overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size,
                                      normalized);
        }
        // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
        if (box_size == 8 || box_size == 16 || box_size == 24 ||
            box_size == 32) {
          overlap = PolyIoU<T>(bbox_data + idx * box_size,
                               bbox_data + kept_idx * box_size,
                               box_size,
                               normalized);
        }
Y
Yan Chunwei 已提交
165 166 167 168 169 170
        keep = overlap <= adaptive_threshold;
      } else {
        break;
      }
    }
    if (keep) {
171
      selected_indices->push_back(idx);
Y
Yan Chunwei 已提交
172
    }
173
    sorted_indices.erase(sorted_indices.begin());
Y
Yan Chunwei 已提交
174 175 176 177 178 179
    if (keep && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
template <typename T>
void MultiClassNMS(const operators::MulticlassNmsParam& param,
                   const Tensor& scores,
                   const Tensor& bboxes,
                   const int scores_size,
                   std::map<int, std::vector<int>>* indices,
                   int* num_nmsed_out) {
  int64_t background_label = param.background_label;
  int64_t nms_top_k = param.nms_top_k;
  int64_t keep_top_k = param.keep_top_k;
  bool normalized = param.normalized;
  T nms_threshold = static_cast<T>(param.nms_threshold);
  T nms_eta = static_cast<T>(param.nms_eta);
  T score_threshold = static_cast<T>(param.score_threshold);

  int num_det = 0;

  int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
  Tensor bbox_slice, score_slice;
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
    if (scores_size == 3) {
      score_slice = scores.Slice<T>(c, c + 1);
      bbox_slice = bboxes;
    } else {
      score_slice.Resize({scores.dims()[0], 1});
      bbox_slice.Resize({scores.dims()[0], 4});
      SliceOneClass<T>(scores, c, &score_slice);
      SliceOneClass<T>(bboxes, c, &bbox_slice);
    }
    NMSFast(bbox_slice,
            score_slice,
            score_threshold,
            nms_threshold,
            nms_eta,
            nms_top_k,
            &((*indices)[c]),
            normalized);
    if (scores_size == 2) {
      std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
    }
    num_det += (*indices)[c].size();
  }
Y
Yan Chunwei 已提交
223

224 225 226 227 228 229 230 231 232 233 234 235 236
  *num_nmsed_out = num_det;
  const T* scores_data = scores.data<T>();
  if (keep_top_k > -1 && num_det > keep_top_k) {
    const T* sdata;
    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : *indices) {
      int label = it.first;
      if (scores_size == 3) {
        sdata = scores_data + label * scores.dims()[1];
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        SliceOneClass<T>(scores, label, &score_slice);
        sdata = score_slice.data<T>();
Y
Yan Chunwei 已提交
237
      }
238 239 240 241 242
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        score_index_pairs.push_back(
            std::make_pair(sdata[idx], std::make_pair(label, idx)));
Y
Yan Chunwei 已提交
243 244
      }
    }
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(),
                     score_index_pairs.end(),
                     SortScorePairDescend<std::pair<int, int>>);
    score_index_pairs.resize(keep_top_k);

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (size_t j = 0; j < score_index_pairs.size(); ++j) {
      int label = score_index_pairs[j].second.first;
      int idx = score_index_pairs[j].second.second;
      new_indices[label].push_back(idx);
    }
    if (scores_size == 2) {
      for (const auto& it : new_indices) {
        int label = it.first;
        std::stable_sort(new_indices[label].begin(), new_indices[label].end());
Y
Yan Chunwei 已提交
262 263
      }
    }
264 265
    new_indices.swap(*indices);
    *num_nmsed_out = keep_top_k;
Y
Yan Chunwei 已提交
266
  }
267
}
Y
Yan Chunwei 已提交
268

269 270 271 272 273
template <typename T>
void MultiClassOutput(const Tensor& scores,
                      const Tensor& bboxes,
                      const std::map<int, std::vector<int>>& selected_indices,
                      const int scores_size,
274 275 276
                      Tensor* outs,
                      int* oindices = nullptr,
                      const int offset = 0) {
277 278 279 280 281
  int64_t class_num = scores.dims()[1];
  int64_t predict_dim = scores.dims()[1];
  int64_t box_size = bboxes.dims()[1];
  if (scores_size == 2) {
    box_size = bboxes.dims()[2];
Y
Yan Chunwei 已提交
282
  }
283 284 285 286 287 288 289
  int64_t out_dim = box_size + 2;
  auto* scores_data = scores.data<T>();
  auto* bboxes_data = bboxes.data<T>();
  auto* odata = outs->mutable_data<T>();
  const T* sdata;
  Tensor bbox;
  bbox.Resize({scores.dims()[0], box_size});
Y
Yan Chunwei 已提交
290
  int count = 0;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  for (const auto& it : selected_indices) {
    int label = it.first;
    const std::vector<int>& indices = it.second;
    if (scores_size == 2) {
      SliceOneClass<T>(bboxes, label, &bbox);
    } else {
      sdata = scores_data + label * predict_dim;
    }
    for (size_t j = 0; j < indices.size(); ++j) {
      int idx = indices[j];
      odata[count * out_dim] = label;  // label
      const T* bdata;
      if (scores_size == 3) {
        bdata = bboxes_data + idx * box_size;
        odata[count * out_dim + 1] = sdata[idx];  // score
306 307 308
        if (oindices != nullptr) {
          oindices[count] = offset + idx;
        }
309 310 311
      } else {
        bdata = bbox.data<T>() + idx * box_size;
        odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
312 313 314
        if (oindices != nullptr) {
          oindices[count] = offset + idx * class_num + label;
        }
Y
Yan Chunwei 已提交
315
      }
316 317 318
      // xmin, ymin, xmax, ymax or multi-points coordinates
      std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
      count++;
Y
Yan Chunwei 已提交
319 320 321 322
    }
  }
}

323 324
void MulticlassNmsCompute::Run() {
  auto& param = Param<operators::MulticlassNmsParam>();
325 326 327
  auto* boxes = param.bboxes;
  auto* scores = param.scores;
  auto* outs = param.out;
328 329
  bool return_index = param.index ? true : false;
  auto* index = param.index;
330 331
  auto score_dims = scores->dims();
  auto score_size = score_dims.size();
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
  std::vector<std::map<int, std::vector<int>>> all_indices;
  std::vector<uint64_t> batch_starts = {0};
  int64_t batch_size = score_dims[0];
  int64_t box_dim = boxes->dims()[2];
  int64_t out_dim = box_dim + 2;
  int num_nmsed_out = 0;
  Tensor boxes_slice, scores_slice;
  int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
  for (int i = 0; i < n; ++i) {
    if (score_size == 3) {
      scores_slice = scores->Slice<float>(i, i + 1);
      scores_slice.Resize({score_dims[1], score_dims[2]});
      boxes_slice = boxes->Slice<float>(i, i + 1);
      boxes_slice.Resize({score_dims[2], box_dim});
347
    } else {
348 349 350
      auto boxes_lod = boxes->lod().back();
      scores_slice = scores->Slice<float>(boxes_lod[i], boxes_lod[i + 1]);
      boxes_slice = boxes->Slice<float>(boxes_lod[i], boxes_lod[i + 1]);
351
    }
352 353 354 355 356
    std::map<int, std::vector<int>> indices;
    MultiClassNMS<float>(
        param, scores_slice, boxes_slice, score_size, &indices, &num_nmsed_out);
    all_indices.push_back(indices);
    batch_starts.push_back(batch_starts.back() + num_nmsed_out);
357
  }
358 359 360

  uint64_t num_kept = batch_starts.back();
  if (num_kept == 0) {
361 362 363 364 365 366 367 368 369
    if (return_index) {
      outs->Resize({0, out_dim});
      index->Resize({0, 1});
    } else {
      outs->Resize({1, 1});
      float* od = outs->mutable_data<float>();
      od[0] = -1;
      batch_starts = {0, 1};
    }
370
  } else {
371
    outs->Resize({static_cast<int64_t>(num_kept), out_dim});
372 373
    int offset = 0;
    int* oindices = nullptr;
374 375 376 377 378 379
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice<float>(i, i + 1);
        boxes_slice = boxes->Slice<float>(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice.Resize({score_dims[2], box_dim});
380 381 382
        if (return_index) {
          offset = i * score_dims[2];
        }
383 384 385 386
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice<float>(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice<float>(boxes_lod[i], boxes_lod[i + 1]);
387 388 389
        if (return_index) {
          offset = boxes_lod[i] * score_dims[1];
        }
390 391 392 393 394
      }
      int64_t s = static_cast<int64_t>(batch_starts[i]);
      int64_t e = static_cast<int64_t>(batch_starts[i + 1]);
      if (e > s) {
        Tensor out = outs->Slice<float>(s, e);
395 396 397 398 399 400 401 402 403 404 405 406
        if (return_index) {
          index->Resize({static_cast<int64_t>(num_kept), 1});
          int* output_idx = index->mutable_data<int>();
          oindices = output_idx + s;
        }
        MultiClassOutput<float>(scores_slice,
                                boxes_slice,
                                all_indices[i],
                                score_dims.size(),
                                &out,
                                oindices,
                                offset);
407 408
      }
    }
409 410
  }

411 412
  LoD lod;
  lod.emplace_back(batch_starts);
413 414 415
  if (return_index) {
    index->set_lod(lod);
  }
416 417
  outs->set_lod(lod);
}
418 419
}  // namespace host
}  // namespace kernels
Y
Yan Chunwei 已提交
420 421
}  // namespace lite
}  // namespace paddle
422 423 424 425 426 427 428 429 430 431

REGISTER_LITE_KERNEL(multiclass_nms,
                     kHost,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::host::MulticlassNmsCompute,
                     def)
    .BindInput("BBoxes", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("Scores", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
432 433 434 435 436 437 438 439 440 441 442
    .Finalize();

REGISTER_LITE_KERNEL(multiclass_nms2,
                     kHost,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::host::MulticlassNmsCompute,
                     def)
    .BindInput("BBoxes", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("Scores", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
443 444
    .BindOutput("Index",
                {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt32))})
445
    .Finalize();