elementwise_mul_compute.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_mul_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ElementwiseMulFloatImageCompute::PrepareForRun() {
  ele_param_ = param_.get_mutable<param_t>();
  auto* y = ele_param_->Y;
29
  auto* x = ele_param_->X;
30
  auto y_dims = y->dims();
31 32
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
33 34 35 36
    kernel_func_name_ = "elementwise_mul";
  } else if (y_dims.size() == 1) {
    kernel_func_name_ = "channel_mul_d1";
  } else if (y_dims.size() == 2) {
37 38 39 40 41
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      kernel_func_name_ = "channel_mul_d2_nc";
    } else {
      kernel_func_name_ = "channel_mul_d2_hw";
    }
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  } else if (y_dims.size() == 4) {
    kernel_func_name_ = "channel_mul_d4";
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():" << y_dims.size()
               << ", x_dims.size():" << ele_param_->X->dims().size();
  }
  VLOG(4) << "kernel_func_name_:" << kernel_func_name_;
  VLOG(4) << "y_dims:" << y_dims;
  VLOG(4) << "y_dims.size():" << y_dims.size();

  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "image/elementwise_mul_kernel.cl", build_options_);
}

void ElementwiseMulFloatImageCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto* out = ele_param_->Out;

  VLOG(4) << "x->target():" << TargetToStr(x->target());
  VLOG(4) << "y->target():" << TargetToStr(y->target());
  VLOG(4) << "out->target():" << TargetToStr(out->target());
  VLOG(4) << "x->dims():" << x->dims();
  VLOG(4) << "y->dims():" << y->dims();
  VLOG(4) << "out->dims():" << out->dims();

  paddle::lite::CLImageConverterDefault default_convertor;
  auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims());  // w, h
  auto x_img_width = x_img_shape[0];
  auto x_img_height = x_img_shape[1];
  auto out_img_shape =
      default_convertor.InitImageDimInfoWith(out->dims());  // w, h
  auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

  auto* x_img = x->data<float, cl::Image2D>();
  auto* y_img = y->data<float, cl::Image2D>();
  auto* out_img =
      out->mutable_data<float, cl::Image2D>(out_img_shape[0], out_img_shape[1]);

  VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
  VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
  VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
          << out_img_shape[1];

  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int arg_idx = 0;
  auto y_dims = y->dims();
96 97
  auto x_dims = x->dims();
  if (y_dims == x_dims) {
98
    // kernel: elementwise_mul(channel_mul_d4)
99
    cl_int status = kernel->setArg(arg_idx, *x_img);
100
    CL_CHECK_FATAL(status);
101
    status = kernel->setArg(++arg_idx, *y_img);
102
    CL_CHECK_FATAL(status);
103
    status = kernel->setArg(++arg_idx, *out_img);
104 105
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 1 || y_dims.size() == 4) {
106
    auto tensor_w = x_dims[x_dims.size() - 1];
107 108
    VLOG(4) << "tensor_w:" << tensor_w;
    // kernel: channel_mul_d1 / channel_mul_d4
109
    cl_int status = kernel->setArg(arg_idx, *x_img);
110
    CL_CHECK_FATAL(status);
111
    status = kernel->setArg(++arg_idx, *y_img);
112
    CL_CHECK_FATAL(status);
113
    status = kernel->setArg(++arg_idx, *out_img);
114
    CL_CHECK_FATAL(status);
115
    status = kernel->setArg(++arg_idx, static_cast<const int>(tensor_w));
116 117
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 2) {
118 119 120 121
    if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
      auto tensor_w = x_dims[x_dims.size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;
      // kernel: channel_mul_d2_nc
122
      cl_int status = kernel->setArg(arg_idx, *x_img);
123
      CL_CHECK_FATAL(status);
124
      status = kernel->setArg(++arg_idx, *y_img);
125
      CL_CHECK_FATAL(status);
126
      status = kernel->setArg(++arg_idx, *out_img);
127
      CL_CHECK_FATAL(status);
128
      status = kernel->setArg(++arg_idx, static_cast<const int>(tensor_w));
129 130 131 132 133 134
      CL_CHECK_FATAL(status);
    } else {
      auto y_tensor_h = y->dims()[0];
      auto y_tensor_w = y->dims()[1];
      VLOG(4) << "y_tensor_w:" << y_tensor_w << " y_tensor_h:" << y_tensor_h;
      // kernel: channel_mul_d2_hw
135
      cl_int status = kernel->setArg(arg_idx, *x_img);
136
      CL_CHECK_FATAL(status);
137
      status = kernel->setArg(++arg_idx, *y_img);
138
      CL_CHECK_FATAL(status);
139
      status = kernel->setArg(++arg_idx, *out_img);
140
      CL_CHECK_FATAL(status);
141
      status = kernel->setArg(++arg_idx, static_cast<const int>(y_tensor_w));
142
      CL_CHECK_FATAL(status);
143
      status = kernel->setArg(++arg_idx, static_cast<const int>(y_tensor_h));
144 145
      CL_CHECK_FATAL(status);
    }
146 147 148 149 150 151 152 153
  } else {
    LOG(FATAL) << "ElementwiseMul not supported y_dims.size():"
               << y_dims.size();
  }

  auto global_work_size = cl::NDRange{static_cast<cl::size_type>(x_img_width),
                                      static_cast<cl::size_type>(x_img_height)};
  auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
154
      *kernel.get(),
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_img, event_);

  VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
}

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(elementwise_mul,
                     kOpenCL,
                     kFloat,
                     kImageDefault,
                     ocl::ElementwiseMulFloatImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();