depthwise_conv_pe.hpp 4.0 KB
Newer Older
C
Chon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/pe.hpp"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/pes/conv_process.hpp"
C
Chon 已提交
21

Y
Yan Chunwei 已提交
22
namespace paddle {
C
Chon 已提交
23 24 25 26 27
namespace zynqmp {

class DepthwiseConvPE : public PE {
 public:
  bool init() {
Y
Yan Chunwei 已提交
28 29 30
    Tensor* output = param_.output;
    output->setAligned(true);
    output->setDataLocation(Device);
C
Chon 已提交
31 32 33 34 35 36 37 38
    return true;
  }

  void apply() {
    DepthwiseConvParam& param = param_;
    Tensor* input = param.input;
    Tensor* output = param.output;
    int channel = output->shape().channel();
39
    
Y
Yan Chunwei 已提交
40
    float16* b_data = bias_.mutableData<float16>(FP16, param_.bias()->shape());
41 42 43 44 45 46 47 48 49 50 51
    if (param_.bias()->dataType() == FP32) {
      float* new_bias_data = param_.bias()->data<float>();
      // bias从float转换成float16   
      for (int i = 0; i < channel; i++) {
        b_data[i] = float_to_half(new_bias_data[i]);
      }
      bias_.flush();
    } else {
      float16* new_bias_data = param_.bias()->data<float16>();
      memcpy(b_data, new_bias_data, channel * sizeof(float16));
      bias_.flush();
C
Chon 已提交
52 53
    }

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    if (param_.scale()->dataType() == FP32) {
      float* new_scale_data = param_.scale()->data<float>();
      Tensor* quantized_filter = param.quantizedFilter();
      quantized_filter->mutableData<float16>(FP16, param.filter->shape());
      format_dw_filter(param.filter, param.quantizedFilter(), new_scale_data);
      
    } else {
      //TODO filter 全为1时,且channal为对齐时
      float16* scale_data = param_.scale()->data<float16>();
      float16* filter_data = param.quantizedFilter()->mutableData<float16>(FP16, param.filter->shape());
      // memcpy(filter_data, scale_data, channel * sizeof(float16));
      memcpy(filter_data, scale_data, param.filter->shape().numel() * sizeof(float16));
      param.quantizedFilter()->flush();
    }
   
C
Chon 已提交
69 70

    DWconvArgs args = {0};
Y
Yan Chunwei 已提交
71
    args.bias_address = b_data;
C
Chon 已提交
72
    args.filter_address = param.quantizedFilter()->data<void>();
Y
Yan Chunwei 已提交
73 74
    args.kernel.width = param.filter->shape().height();
    args.kernel.height = param.filter->shape().width();
C
Chon 已提交
75 76 77 78 79 80
    args.kernel.stride_w = param.strides[0];
    args.kernel.stride_h = param.strides[1];
    args.image.address = input->data<void>();
    args.image.channels = input->shape().channel();
    args.image.height = input->shape().height();
    args.image.width = input->shape().width();
81 82
    args.image.pad_width = param.paddings[0];
    args.image.pad_height = param.paddings[1];
C
Chon 已提交
83 84 85 86 87 88 89
    args.image.scale_address = input->scale();
    args.output.address = output->data<void>();
    args.output.scale_address = output->scale();
    args.out_width = param.output->shape().width();
    args.out_height = param.output->shape().height();
    args.sub_conv_num = 1;
    param.args = args;
Y
Yan Chunwei 已提交
90 91 92 93

    inplace_.relu_enable = param_.relu.enabled;
    inplace_.power_enable = false;
    inplace_.normalize_enable = false;
C
Chon 已提交
94 95
  }

Y
Yan Chunwei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
  bool dispatch() {
    param_.input->syncToDevice();
    if (param_.relu.enabled) {
      inplace_.relu_enable = param_.relu.enabled;
      config_inplace(inplace_);
    }
    bool ret = compute_fpga_dwconv(param_.args) == 0;
    if (param_.relu.enabled) {
      inplace_.relu_enable = false;
      config_inplace(inplace_);
    }
    return ret;
  }
C
Chon 已提交
109 110 111 112 113

  DepthwiseConvParam& param() { return param_; }

 private:
  DepthwiseConvParam param_;
Y
Yan Chunwei 已提交
114 115
  Tensor bias_;
  InplaceArgs inplace_ = {0};
C
Chon 已提交
116 117 118
};

}  // namespace zynqmp
119
}  // namespace paddle_mobile