grid_sampler_image_compute.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class GridSamplerImageCompute : public KernelLite<TARGET(kOpenCL),
                                                  PRECISION(kFP16),
                                                  DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::GridSamplerParam;

  std::string doc() const override {
38
    return "GridSampler using cl::Image2D(ImageDefault/RGBA), kFP16";
39 40 41 42 43 44 45 46
  }

  void PrepareForRun() override {
    grid_param_ = param_.get_mutable<param_t>();

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/grid_sampler_kernel.cl", build_options_);
47
    VLOG(4) << "kernel_func_name_:" << kernel_func_name_;
48 49 50 51 52 53 54 55 56 57 58 59
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = grid_param_->x;
    auto* out = grid_param_->out;
    auto* grid = grid_param_->grid;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

60
#ifndef LITE_SHUTDOWN_LOG
61 62 63 64
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
65
#endif
66 67 68

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
69
    // VLOG(4) << "x_image: " << x_img;
70 71

    auto* grid_img = x->data<half_t, cl::Image2D>();
72
    // VLOG(4) << "grid_img: " << grid_img;
73 74 75

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
76
#ifndef LITE_SHUTDOWN_LOG
77
    // VLOG(4) << "out_image" << out_img;
78 79
    VLOG(4) << "out_image_shape[w,h]:" << out_image_shape["width"] << " "
            << out_image_shape["height"];
80
#endif
81 82 83 84 85 86 87 88 89 90 91 92
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    int out_height = out_dims[2];
    int out_width = out_dims[3];
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
93
#ifndef LITE_SHUTDOWN_LOG
94 95
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
96
#endif
97 98 99 100 101 102 103 104 105 106 107 108 109
    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *grid_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_height);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_width);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
110 111
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2] / 4)};
112 113 114 115 116 117 118 119 120 121

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
122
#ifndef LITE_SHUTDOWN_LOG
123 124
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
125
#endif
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }

 protected:
  param_t* grid_param_{nullptr};
  std::string kernel_func_name_{"grid_sampler"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(grid_sampler,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::GridSamplerImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Grid",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();