instance_norm_compute_test.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"

namespace paddle {
namespace lite {

class InstanceNormComputeTest : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "x";
  std::string output_ = "y";
  std::string saved_mean_ = "saved_mean";
  std::string saved_variance_ = "saved_variance";
  std::string scale_ = "scale";
  std::string bias_ = "bias";

  DDim dims_{{4, 5, 19, 19}};
  float epsilon_ = 1e-5f;

 public:
  InstanceNormComputeTest(const Place& place,
                          const std::string& alias,
                          DDim dims,
                          float epsilon)
      : TestCase(place, alias), dims_(dims), epsilon_(epsilon) {}

  void RunBaseline(Scope* scope) override {
    auto x = scope->FindTensor(input_);
    auto scale = scope->FindTensor(scale_);
    auto bias = scope->FindTensor(bias_);
    auto out = scope->NewTensor(output_);
    auto saved_mean = scope->NewTensor(saved_mean_);
    auto saved_variance = scope->NewTensor(saved_variance_);
    CHECK(out);
    CHECK(saved_mean);
    CHECK(saved_variance);
    DDim saved_dim({dims_[0] * dims_[1]});
    out->Resize(dims_);
    saved_mean->Resize(saved_dim);
    saved_variance->Resize(saved_dim);

    auto x_data = x->data<float>();
    auto scale_data = scale->data<float>();
    auto bias_data = bias->data<float>();
    auto out_data = out->mutable_data<float>();
    auto saved_mean_data = saved_mean->mutable_data<float>();
    auto saved_variance_data = saved_variance->mutable_data<float>();

    int n = x->dims()[0];
    int c = x->dims()[1];
    int spatial_size = x->dims()[2] * x->dims()[3];

    // compute mean
    for (int i = 0; i < n * c; ++i) {
      const float* x_ptr = x_data + i * spatial_size;
      float sum = 0.f;
      for (int j = 0; j < spatial_size; ++j) {
        sum += x_ptr[j];
      }
      saved_mean_data[i] = sum / spatial_size;
    }
    // compute variance
    for (int i = 0; i < n * c; ++i) {
      const float* x_ptr = x_data + i * spatial_size;
      float sum = 0.f;
      for (int j = 0; j < spatial_size; ++j) {
        sum +=
            (x_ptr[j] - saved_mean_data[i]) * (x_ptr[j] - saved_mean_data[i]);
      }
      saved_variance_data[i] = 1.f / sqrtf(sum / spatial_size + epsilon_);
    }
    // compute out
    for (int i = 0; i < n * c; ++i) {
      const float* x_ptr = x_data + i * spatial_size;
      float* out_ptr = out_data + i * spatial_size;
      float scale_val = scale_data[i % c];
      float bias_val = bias_data[i % c];
      for (int j = 0; j < spatial_size; ++j) {
        out_ptr[j] = scale_val * (x_ptr[j] - saved_mean_data[i]) *
                         saved_variance_data[i] +
                     bias_val;
      }
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("instance_norm");
    op_desc->SetInput("X", {input_});
    op_desc->SetInput("Bias", {bias_});
    op_desc->SetInput("Scale", {scale_});
    op_desc->SetOutput("Y", {output_});
    op_desc->SetOutput("SavedMean", {saved_mean_});
    op_desc->SetOutput("SavedVariance", {saved_variance_});
    op_desc->SetAttr("epsilon", epsilon_);
  }

  void PrepareData() override {
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -1.f, 1.f, dims_.production());

    DDim scale_dim{{dims_[1]}};
    std::vector<float> scale(scale_dim.production());
    fill_data_rand(scale.data(), -1.f, 1.f, scale_dim.production());

    std::vector<float> bias(scale_dim.production());
    fill_data_rand(bias.data(), -1.f, 1.f, scale_dim.production());

    SetCommonTensor(input_, dims_, din.data());
    SetCommonTensor(scale_, scale_dim, scale.data());
    SetCommonTensor(bias_, scale_dim, bias.data());
  }
};

void test_instance_norm(Place place) {
  for (auto& n : {1, 3, 16}) {
    for (auto& c : {1, 4, 16}) {
      for (auto& h : {1, 16, 33, 56}) {
        for (auto& w : {1, 17, 34, 55}) {
          DDim dim_in({n, c, h, w});
          float epsilon = 1e-5f;
          std::unique_ptr<arena::TestCase> tester(
              new InstanceNormComputeTest(place, "def", dim_in, epsilon));
#ifdef LITE_WITH_ARM
          auto& ctx = tester->context()->As<ARMContext>();
          ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 4);
#endif
          arena::Arena arena(std::move(tester), place, 6e-5);
          if (!arena.TestPrecision()) {
            LOG(ERROR) << "run n: " << n << ", c: " << c << ", h: " << h
                       << ", w: " << w;
            return;
          }
        }
      }
    }
  }
}

TEST(InstanceNorm, precision) {
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_instance_norm(place);
#endif
}

}  // namespace lite
}  // namespace paddle