paddle_mobile_jni.cpp 13.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ANDROID

#include "paddle_mobile_jni.h"
D
dolphin8 已提交
18
#include <cmath>
19 20 21 22
#include "common/log.h"
#include "framework/tensor.h"
#include "io/paddle_mobile.h"

23 24 25 26 27 28
#ifdef ENABLE_EXCEPTION

#include "common/enforce.h"

#endif

W
wangliu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
#ifdef __cplusplus
extern "C" {
#endif
namespace paddle_mobile {
namespace jni {
using framework::DDim;
using framework::Program;
using framework::Tensor;
using paddle_mobile::CPU;
using std::string;

extern const char *ANDROID_LOG_TAG =
    "paddle_mobile LOG built on " __DATE__ " " __TIME__;
42 43
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
static std::mutex shared_mutex;
W
wangliu 已提交
44

45
PaddleMobile<CPU> *getPaddleMobileInstance() { return &paddle_mobile; }
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56

string jstring2cppstring(JNIEnv *env, jstring jstr) {
  const char *cstr = env->GetStringUTFChars(jstr, 0);
  string cppstr(cstr);
  env->ReleaseStringUTFChars(jstr, cstr);
  return cppstr;
}

JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
                                                          jclass thiz,
                                                          jstring modelPath) {
57
  std::lock_guard<std::mutex> lock(shared_mutex);
58
  ANDROIDLOGI("load invoked");
W
wangliu 已提交
59
  bool optimize = true;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), optimize);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             optimize);
#endif
  return static_cast<jboolean>(isLoadOk);
W
wangliu 已提交
75 76
}

77 78
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
    JNIEnv *env, jclass thiz, jstring modelPath) {
79 80
  std::lock_guard<std::mutex> lock(shared_mutex);

81 82 83
  ANDROIDLOGI("loadQualified invoked");
  bool optimize = true;
  bool qualified = true;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             optimize, qualified);
#endif

  return static_cast<jboolean>(isLoadOk);
100 101
}

102 103
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
104
  std::lock_guard<std::mutex> lock(shared_mutex);
105
  ANDROIDLOGI("loadCombined invoked");
106
  bool optimize = true;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             jstring2cppstring(env, paramPath),
                                             optimize);
#endif
  return static_cast<jboolean>(isLoadOk);
124 125
}

126 127
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
128
  std::lock_guard<std::mutex> lock(shared_mutex);
129 130 131
  ANDROIDLOGI("loadCombinedQualified invoked");
  bool optimize = true;
  bool qualified = true;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             jstring2cppstring(env, paramPath),
                                             optimize, qualified);
#endif
  return static_cast<jboolean>(isLoadOk);
149 150
}

W
wangliu 已提交
151 152
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictImage(
    JNIEnv *env, jclass thiz, jfloatArray buf, jintArray ddims) {
153 154
  std::lock_guard<std::mutex> lock(shared_mutex);

155
  ANDROIDLOGI("predictImage invoked");
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  ANDROIDLOGE("ENABLE_EXCEPTION!");

  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    int count = 0;
    float *dataPointer = nullptr;
    if (nullptr != buf) {
      dataPointer = env->GetFloatArrayElements(buf, NULL);
    }
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = dataPointer[i];
    }
    auto output = getPaddleMobileInstance()->Predict(input);
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->DeleteLocalRef(ddims);
    env->ReleaseFloatArrayElements(buf, dataPointer, 0);
    env->DeleteLocalRef(buf);

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }

#else
195
  jsize ddim_size = env->GetArrayLength(ddims);
W
wangliu 已提交
196 197
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
198 199
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
W
wangliu 已提交
200 201
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
202
  int length = framework::product(ddim);
W
wangliu 已提交
203 204 205 206 207 208 209 210
  int count = 0;
  float *dataPointer = nullptr;
  if (nullptr != buf) {
    dataPointer = env->GetFloatArrayElements(buf, NULL);
  }
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
211
  for (int i = 0; i < length; i++) {
W
wangliu 已提交
212 213
    input_ptr[i] = dataPointer[i];
  }
214
  auto output = getPaddleMobileInstance()->Predict(input);
W
wangliu 已提交
215 216 217
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
W
wangliu 已提交
218
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
219 220 221
  env->DeleteLocalRef(ddims);
  env->ReleaseFloatArrayElements(buf, dataPointer, 0);
  env->DeleteLocalRef(buf);
Z
zhaojiaying01 已提交
222
//  env->DeleteLocalRef(dataPointer);
223 224
#endif

225
  ANDROIDLOGI("predictImage finished");
226

W
wangliu 已提交
227 228 229
  return result;
}

W
wangliu 已提交
230 231 232 233
inline int yuv_to_rgb(int y, int u, int v, float *r, float *g, float *b) {
  int r1 = (int)(y + 1.370705 * (v - 128));
  int g1 = (int)(y - 0.698001 * (u - 128) - 0.703125 * (v - 128));
  int b1 = (int)(y + 1.732446 * (u - 128));
234

W
wangliu 已提交
235 236 237 238 239 240
  r1 = (int)fminf(255, fmaxf(0, r1));
  g1 = (int)fminf(255, fmaxf(0, g1));
  b1 = (int)fminf(255, fmaxf(0, b1));
  *r = r1;
  *g = g1;
  *b = b1;
241

W
wangliu 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  return 0;
}
void convert_nv21_to_matrix(uint8_t *nv21, float *matrix, int width, int height,
                            int targetWidth, int targetHeight, float *means) {
  const uint8_t *yData = nv21;
  const uint8_t *vuData = nv21 + width * height;

  const int yRowStride = width;
  const int vuRowStride = width;

  float scale_x = width * 1.0 / targetWidth;
  float scale_y = height * 1.0 / targetHeight;

  for (int j = 0; j < targetHeight; ++j) {
    int y = j * scale_y;
    const uint8_t *pY = yData + y * yRowStride;
    const uint8_t *pVU = vuData + (y >> 1) * vuRowStride;
    for (int i = 0; i < targetWidth; ++i) {
      int x = i * scale_x;
      const int offset = ((x >> 1) << 1);
      float r = 0;
      float g = 0;
      float b = 0;
      yuv_to_rgb(pY[x], pVU[offset + 1], pVU[offset], &r, &g, &b);
      int r_index = j * targetWidth + i;
      int g_index = r_index + targetWidth * targetHeight;
      int b_index = g_index + targetWidth * targetHeight;
      matrix[r_index] = r - means[0];
      matrix[g_index] = g - means[1];
      matrix[b_index] = b - means[2];
272
    }
W
wangliu 已提交
273 274
  }
}
275

W
wangliu 已提交
276 277 278
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictYuv(
    JNIEnv *env, jclass thiz, jbyteArray yuv_, jint imgwidth, jint imgHeight,
    jintArray ddims, jfloatArray meanValues) {
279 280
  std::lock_guard<std::mutex> lock(shared_mutex);

W
wangliu 已提交
281
  ANDROIDLOGI("predictYuv invoked");
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    float matrix[length];
    jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
    float *meansPointer = nullptr;
    if (nullptr != meanValues) {
      meansPointer = env->GetFloatArrayElements(meanValues, NULL);
    }
    convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                           ddim[2], meansPointer);
    int count = 0;
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = matrix[i];
    }
    auto output = getPaddleMobileInstance()->Predict(input);
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseByteArrayElements(yuv_, yuv, 0);
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
    ANDROIDLOGI("predictYuv finished");
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
W
wangliu 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  jsize ddim_size = env->GetArrayLength(ddims);
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
  int length = framework::product(ddim);
  float matrix[length];
  jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
  float *meansPointer = nullptr;
  if (nullptr != meanValues) {
    meansPointer = env->GetFloatArrayElements(meanValues, NULL);
  }
  convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                         ddim[2], meansPointer);
  int count = 0;
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
  for (int i = 0; i < length; i++) {
    input_ptr[i] = matrix[i];
  }
344
  auto output = getPaddleMobileInstance()->Predict(input);
W
wangliu 已提交
345 346 347 348 349 350 351
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
  env->ReleaseByteArrayElements(yuv_, yuv, 0);
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
  env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
  ANDROIDLOGI("predictYuv finished");
352 353
#endif

W
wangliu 已提交
354
  return result;
355
}
xiebaiyuan's avatar
xiebaiyuan 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
JNIEXPORT jlongArray JNICALL
Java_com_baidu_paddle_PML_predictLod(JNIEnv *env, jclass thiz, jlongArray buf) {
  std::lock_guard<std::mutex> lock(shared_mutex);

  jlong *ddim_ptr = env->GetLongArrayElements(buf, NULL);
  jsize ddim_size = env->GetArrayLength(buf);
  std::vector<int64_t> ids;

  for (int i = 0; i < ddim_size; ++i) {
    jlong x = ddim_ptr[i];
    ids.push_back((int64_t)x);
  }

  paddle_mobile::framework::LoDTensor words;

  auto size = static_cast<int>(ids.size());

  paddle_mobile::framework::LoD lod{{0, ids.size()}};
  DDim dims{size, 1};
  words.Resize(dims);
  words.set_lod(lod);
  auto *pdata = words.mutable_data<int64_t>();
  size_t n = words.numel() * sizeof(int64_t);
  memcpy(pdata, ids.data(), n);
  auto vec_result = paddle_mobile.PredictLod(words);
  int count = vec_result->numel();
  jlongArray result = NULL;
  ANDROIDLOGE("predict nlp size %d", count);

  result = env->NewLongArray(count);

  env->SetLongArrayRegion(result, 0, count, vec_result->data<int64_t>());

  return result;
}
391

392 393 394
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_setThread(JNIEnv *env,
                                                           jclass thiz,
                                                           jint threadCount) {
395 396
  std::lock_guard<std::mutex> lock(shared_mutex);

397
  ANDROIDLOGI("setThreadCount %d", threadCount);
398 399 400 401 402 403 404
#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->SetThreadNum((int)threadCount);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
405
  getPaddleMobileInstance()->SetThreadNum((int)threadCount);
406 407

#endif
408 409
}

W
wangliu 已提交
410
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_clear(JNIEnv *env,
411
                                                       jclass thiz) {
412 413 414 415 416 417 418 419 420 421
  std::lock_guard<std::mutex> lock(shared_mutex);

#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->Clear();

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
422
  getPaddleMobileInstance()->Clear();
423 424

#endif
425
}
W
wangliu 已提交
426 427 428 429 430 431 432 433 434

}  // namespace jni
}  // namespace paddle_mobile

#ifdef __cplusplus
}
#endif

#endif