cxx_api_test.cc 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

// For training.
DEFINE_string(startup_program_path, "", "");
DEFINE_string(main_program_path, "", "");

namespace paddle {
namespace lite {

#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(CXXApi, test) {
  const lite::Tensor* out = RunHvyModel();
  LOG(INFO) << out << " memory size " << out->data_size();
  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << out->data<float>()[i];
  }
  LOG(INFO) << "dims " << out->dims();
  // LOG(INFO) << "out " << *out;
}

TEST(CXXApi, save_model) {
  lite::Predictor predictor;
46 47
  std::vector<Place> valid_places({Place{TARGET(kX86), PRECISION(kFloat)}});
  predictor.Build(FLAGS_model_dir, "", "", valid_places);
Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55 56

  LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
  predictor.SaveModel(FLAGS_optimized_model,
                      lite_api::LiteModelType::kProtobuf);
  predictor.SaveModel(FLAGS_optimized_model + ".naive",
                      lite_api::LiteModelType::kNaiveBuffer);
}

/*TEST(CXXTrainer, train) {
57 58
  Place place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)});
  std::vector<Place> valid_places({place});
Y
Yan Chunwei 已提交
59 60
  auto scope = std::make_shared<lite::Scope>();

61
  CXXTrainer trainer(scope, valid_places);
Y
Yan Chunwei 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

  std::string main_program_pb, startup_program_pb;
  ReadBinaryFile(FLAGS_main_program_path, &main_program_pb);
  ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb);
  framework::proto::ProgramDesc main_program_desc, startup_program_desc;
  main_program_desc.ParseFromString(main_program_pb);
  startup_program_desc.ParseFromString(startup_program_pb);

  // LOG(INFO) << main_program_desc.DebugString();

  for (const auto& op : main_program_desc.blocks(0).ops()) {
    LOG(INFO) << "get op " << op.type();
  }

  return;

  trainer.RunStartupProgram(startup_program_desc);
  auto& exe = trainer.BuildMainProgramExecutor(main_program_desc);
  auto* tensor0 = exe.GetInput(0);
  tensor0->Resize(std::vector<int64_t>({100, 100}));
  auto* data0 = tensor0->mutable_data<float>();
  data0[0] = 0;

  exe.Run();
}*/
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK

#ifdef LITE_WITH_ARM
TEST(CXXApi, save_model) {
  lite::Predictor predictor;
92 93
  std::vector<Place> valid_places({Place{TARGET(kARM), PRECISION(kFloat)}});
  predictor.Build(FLAGS_model_dir, "", "", valid_places);
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102

  LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
  predictor.SaveModel(FLAGS_optimized_model);
  predictor.SaveModel(FLAGS_optimized_model + ".naive",
                      lite_api::LiteModelType::kNaiveBuffer);
}

TEST(CXXApi, load_model_naive) {
  lite::Predictor predictor;
103
  std::vector<Place> valid_places({Place{TARGET(kARM), PRECISION(kFloat)}});
Y
Yan Chunwei 已提交
104
  predictor.Build(FLAGS_optimized_model + ".naive",
105 106
                  "",
                  "",
Y
Yan Chunwei 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                  valid_places,
                  {},
                  lite_api::LiteModelType::kNaiveBuffer);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({1, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100; i++) {
    data[i] = 1;
  }

  predictor.Run();

  std::vector<float> result({0.4350058,
                             -0.6048313,
                             -0.29346266,
                             0.40377066,
                             -0.13400325,
                             0.37114543,
                             -0.3407839,
                             0.14574292,
                             0.4104212,
                             0.8938774});

  auto* output_tensor = predictor.GetOutput(0);
132 133 134 135 136 137
  const std::vector<std::string> output_names = predictor.GetOutputNames();
  for (int i = 0; i < outputs.size(); i++) {
    LOG(INFO) << "output_names[" << i << "]:" << output_names[i];
  }
  auto* output_tensor_by_name = predictor.GetOutput(output_names[0]);
  CHECK(output_tensor == output_tensor_by_name);
Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
  auto output_shape = output_tensor->dims().Vectorize();
  ASSERT_EQ(output_shape.size(), 2);
  ASSERT_EQ(output_shape[0], 1);
  ASSERT_EQ(output_shape[1], 500);

  int step = 50;
  for (int i = 0; i < result.size(); i += step) {
    EXPECT_NEAR(output_tensor->data<float>()[i], result[i], 1e-6);
  }
}
#endif

}  // namespace lite
}  // namespace paddle