instance_norm_image_compute.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class InstanceNormImageCompute : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InstanceNormParam;

  std::string doc() const override {
    return "InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto channel = instance_norm_param_->scale->dims()[0];
    auto batch = instance_norm_param_->x->dims()[0];
    int64_t cgroup = (channel + 3) / 4;
    int64_t cround = cgroup * 4;
    std::vector<half_t> scale_img(cround * batch);
    std::vector<half_t> bias_img(cround * batch);
    const float* scale_data = instance_norm_param_->scale->data<float>();
    const float* bias_data = instance_norm_param_->bias->data<float>();
    //! init scale_img bias_img data
    for (int i = 0; i < channel; ++i) {
      scale_img[i] = Float2Half(scale_data[i]);
      bias_img[i] = Float2Half(bias_data[i]);
    }
    for (int i = channel; i < cround; ++i) {
      scale_img[i] = Float2Half(0.f);
      bias_img[i] = Float2Half(0.f);
    }
    for (int i = 1; i < batch; ++i) {
      memcpy(scale_img.data() + i * cround,
             scale_img.data(),
             cround * sizeof(half_t));
      memcpy(bias_img.data() + i * cround,
             bias_img.data(),
             cround * sizeof(half_t));
    }
    DDim scale_img_size{{cgroup, batch}};
    scale_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], scale_img.data());
    bias_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], bias_img.data());
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/instance_norm_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto in_dims = x->dims();

    int batch = in_dims[0];
    int channel = in_dims[1];
    int in_h = in_dims[2];
    int in_w = in_dims[3];

92
#ifndef LITE_SHUTDOWN_LOG
93 94 95
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
96
#endif
97 98 99 100 101

    auto out_image_shape = InitImageDimInfoWith(in_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
102 103

#ifndef LITE_SHUTDOWN_LOG
104 105 106 107
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
108
#endif
109 110 111 112 113 114 115 116 117 118 119

    int threads = 512;
    int group_size_x = (channel + 3) / 4;
    int group_size_y = batch;
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(threads),
                                       static_cast<cl::size_type>(1),
                                       static_cast<cl::size_type>(1)};
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(group_size_x * threads),
                    static_cast<cl::size_type>(group_size_y),
                    static_cast<cl::size_type>(1)};
120 121

#ifndef LITE_SHUTDOWN_LOG
122 123 124 125
    VLOG(4) << "local_work_size:[2D]:" << local_work_size[0] << " "
            << local_work_size[1] << " " << local_work_size[2];
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
126
#endif
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    auto* scale_img = scale_image_.data<half_t, cl::Image2D>();
    auto* bias_img = bias_image_.data<half_t, cl::Image2D>();
    float epsilon = instance_norm_param_->epsilon;
    int arg_idx = 0;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *scale_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *bias_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

 protected:
  param_t* instance_norm_param_{nullptr};
  std::string kernel_func_name_{"instance_norm"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
  Tensor scale_image_;
  Tensor bias_image_;
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(instance_norm,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::InstanceNormImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Y",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();