fc_kernel.cl 13.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cl_common.h>


#define SRC(i, j) src[i * src_width + j]
#define DST(i, j) dst[i * src_height + j]
__kernel
void mat_transpose(__global const CL_DTYPE* src,
                   __global CL_DTYPE* dst,
                   const int src_height, const int src_width) {
  const int col = get_global_id(0); // [0, src_width)  columns of src
  const int row = get_global_id(1); // [0, src_height) rows of src
  DST(col, row) = SRC(row, col);
}


// fc_gemm_naive: keep for check
// a: x_d
// b: filter_d
// c: output_d
__kernel
void fc_gemm_naive(__global const CL_DTYPE* a,
                   __global const CL_DTYPE* b,
                   __global const CL_DTYPE* bias,
                   __global CL_DTYPE* c,
                   const int M, const int N, const int K) {
  const int row = get_global_id(0); // [0, M) height of out == m
  const int col = get_global_id(1); // [0, N) width of out == n

  if ((col >= N) || (row >= M)) {
    return;
  }

  CL_DTYPE a0, b0,
      c0 = (bias && col < N) ? bias[col] : 0;

  for (int p = 0; p < K; ++p) {
    a0 = *(a + row * K + p);
    b0 = *(b + p * N + col);
    c0 += a0 * b0;
  }

#ifdef RELU
  c[row * N + col] = activation(c0);
#else
  c[row * N + col] = c0;
#endif
}


// gemm_batch_naive: used for conv1x1, gemm of im2col_gemm
// a: filter_d
// b: x_d
// c: output_d
__kernel
void gemm_batch_naive(__global const CL_DTYPE* a,
                      __global const CL_DTYPE* b,
                      __global const CL_DTYPE* bias,
                      __global CL_DTYPE* c,
                      const int M, const int N, const int K, const int batch_size) {
  const int row = get_global_id(0); // [0, M) height of out == m
  const int col = get_global_id(1); // [0, N) width of out == n
  const int bidx = get_global_id(2); // [0, batch_size)

  const __global CL_DTYPE* cur_b = b + K * N * bidx;
  __global CL_DTYPE* cur_c = c + M * N * bidx;

  if ((col >= N) || (row >= M) || (bidx >= batch_size)) {
    return;
  }

  CL_DTYPE a0, b0,
      c0 = (bias && col < N) ? bias[row] : 0;

  for (int p = 0; p < K; ++p) {
    a0 = *(a + row * K + p);
    b0 = *(cur_b + p * N + col);
    c0 += a0 * b0;
  }

#ifdef RELU
  cur_c[row * N + col] = activation(c0);
#else
  cur_c[row * N + col] = c0;
#endif
}


// gemm_batch_8x4_buf_buf_N_N: used for conv1x1, gemm of im2col_gemm
// a: filter_d
// b: x_d
// c: output_d

//#define PRINT_KERNEL
__kernel
void gemm_batch(__global const CL_DTYPE* Aptr,
                __global const CL_DTYPE* Bptr,
                __global const CL_DTYPE* bias,
                __global CL_DTYPE* Cptr,
                const int M, const int N, const int K, const int batch_size) {

    int row = get_global_id(0) << 3; // [0, M >> 3) height of out == m
    int col = get_global_id(1) << 2; // [0, N >> 2) width of out == n
    const int bidx = get_global_id(2); // [0, batch_size)

    // update B(input), C(output) with batch_size
    Aptr += mul24(row, K); // A += row * K
    Bptr += mad24(mul24(K, N), bidx, col); // B += K * N * bidx + col
    Cptr += mad24(mul24(M, N), bidx, mul24(row, N)); // C += M * N * bidx + row * N

    CL_DTYPE4 a8x4[8];
    CL_DTYPE4 b4x4[4] = {0.f, 0.f, 0.f, 0.f};
    CL_DTYPE4 c8x4[8] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};

    if (bias) {
        c8x4[0] = bias[row];
        c8x4[1] = bias[row + 1];
        c8x4[2] = bias[row + 2];
        c8x4[3] = bias[row + 3];
        c8x4[4] = bias[row + 4];
        c8x4[5] = bias[row + 5];
        c8x4[6] = bias[row + 6];
        c8x4[7] = bias[row + 7];
    }

    // main loop of K
    short pos = 0;
    for (; pos < K - 3; pos += 4) {
        b4x4[0] = vload4(0, Bptr + mul24(pos, N));
        b4x4[1] = vload4(0, Bptr + mul24(pos+1, N));
        b4x4[2] = vload4(0, Bptr + mul24(pos+2, N));
        b4x4[3] = vload4(0, Bptr + mul24(pos+3, N));

        // main compute of main loop K: pos + 3 < K
        #pragma unroll(8)
        for (int i = 0; i < 8 && i < M; ++i) { // M direction
            a8x4[i] = vload4(0, Aptr + mad24(i, K, pos));

            c8x4[i] += a8x4[i].x * b4x4[0];
            c8x4[i] += a8x4[i].y * b4x4[1];
            c8x4[i] += a8x4[i].z * b4x4[2];
            c8x4[i] += a8x4[i].w * b4x4[3];
        }
    }

    // compute left K
    if (pos < K) {
        b4x4[0] = 0.0f;
        b4x4[1] = 0.0f;
        b4x4[2] = 0.0f;
        // b4x4[3] = 0.0f; // impossible used
        switch (K - pos) {
            case 3:
                b4x4[2] = vload4(0, Bptr + mul24(pos+2, N));

            case 2:
                b4x4[1] = vload4(0, Bptr + mul24(pos+1, N));

            case 1:
                b4x4[0] = vload4(0, Bptr + mul24(pos, N));
        }

        #pragma unroll(8)
        for (int i = 0; i < 8; i++) {
            a8x4[i] = vload4(0, Aptr + mad24(i, K, pos));

            c8x4[i] += a8x4[i].x * b4x4[0] +
                       a8x4[i].y * b4x4[1] +
                       a8x4[i].z * b4x4[2];
        }
    }

#ifdef RELU
    #pragma unroll(8)
    for (int i = 0; i < 8; ++i) {
        c8x4[i] = fmax(c8x4[i], (CL_DTYPE4)0.f);
    }
#endif

    // store c
    if (row + 7 < M && col + 3 < N) {
        #pragma unroll(8)
        for (int i = 0; i < 8; i++) { // M direction
            vstore4(c8x4[i], 0, Cptr + mad24(i, N, col));
        }
    } else {
        for (int i = 0; i < 8 && i + row < M; ++i) { // M direction
            if (col + 3 < N) {
                vstore4(c8x4[i], 0, Cptr + mad24(i, N, col));
            } else {
                switch (N - col) {
                    case 3:
                        *(Cptr + mad24(i, N, col + 2))  = c8x4[i].s2;
                    case 2:
                        *(Cptr + mad24(i, N, col + 1))  = c8x4[i].s1;
                    case 1:
                        *(Cptr + mad24(i, N, col))  = c8x4[i].s0;
               }
            }
        }
    }
}


// fc_gemv_naive: keep for check
// used for fc with M = 1
// a: param.input  {M, K}
// b: param.w      {K, N}
// c: param.output {M, N}
__kernel
void fc_gemv_naive(__global const CL_DTYPE* a,
                   __global const CL_DTYPE* b,
                   __global const CL_DTYPE* bias,
                   __global CL_DTYPE* c,
                   const int M, const int N, const int K) {
    const int col = get_global_id(0); // gws[0]: [0, N) width of B == N

    if (col >= N) {
        return;
    }
    CL_DTYPE c0 = bias ? bias[col] : 0;
    for (int p = 0; p < K; ++p) {
      CL_DTYPE a0 = *(a + p);
      CL_DTYPE b0 = *(b + p * N + col);
      c0 += a0 * b0;
    }

#ifdef RELU
  c[col] = activation(c0);
#else
  c[col] = c0;
#endif
}


// fc_gemv_1x4: for fc with M = 1
// a: param.input  {M, K}
// b: param.w      {K, N}
// c: param.output {M, N}
__kernel
void fc_gemv_1x4(__global const CL_DTYPE* a,
                 __global const CL_DTYPE* b,
                 __global const CL_DTYPE* bias,
                 __global CL_DTYPE* c,
                 const int M, const int N, const int K) {
    const int col = get_global_id(0) << 2; // gws[0]: [0, N >> 2) height of B == N

    if (col + 3 < N) {
        CL_DTYPE4 c0 = 0.0f;
        if (bias) {
            c0.x = bias[col];
            c0.y = bias[col+1];
            c0.z = bias[col+2];
            c0.w = bias[col+3];
        }

        // main loop of K
        int p = 0;
        for (; p < K - 3; p += 4) {
            CL_DTYPE4 a0 = vload4(0, a + p);
            CL_DTYPE4 b0 = vload4(0, b + p * N + col);
            CL_DTYPE4 b1 = vload4(0, b + (p+1) * N + col);
            CL_DTYPE4 b2 = vload4(0, b + (p+2) * N + col);
            CL_DTYPE4 b3 = vload4(0, b + (p+3) * N + col);

            c0 += a0.x * b0;
            c0 += a0.y * b1;
            c0 += a0.z * b2;
            c0 += a0.w * b3;
        }

        // compute left K
        CL_DTYPE4 b2 = 0.0f,
                  b1 = 0.0f,
                  b0 = 0.0f,
                  a0 = 0.0f;
        switch (K - p) {
            case 3: {
                b2 = vload4(0, b + (p+2) * N + col);
                a0.z = a[p + 2];
            }
            case 2: {
                b1 = vload4(0, b + (p+1) * N + col);
                a0.y = a[p + 1];
            }
            case 1: {
                b0 = vload4(0, b + (p) * N + col);
                a0.x = a[p];
            }
        }
        c0 += a0.x * b0;
        c0 += a0.y * b1;
        c0 += a0.z * b2;

        // store res
#ifdef RELU
       if (col % 4 == 0) {
            vstore4(fmax(c0, (CL_DTYPE4)0.f), 0, c + col);
        } else {
            switch (col % 4) {
                case 3:
                    c[col + 2] = activation(c0.z);
                case 2:
                    c[col + 1] = activation(c0.y);
                case 1:
                    c[col] = activation(c0.x);
            }
        }
#else
       if (col % 4 == 0) {
            vstore4(c0, 0, c + col);
        } else {
            switch (col % 4) {
                case 3:
                    c[col + 2] = c0.z;
                case 2:
                    c[col + 1] = c0.y;
                case 1:
                    c[col] = c0.x;
            }
        }
#endif
    } else {
       const int left_col = N - col;
       for (int col_offset = 0; col_offset < left_col; ++col_offset) {
           CL_DTYPE c0 = bias ? bias[col] : 0;
           for (int p = 0; p < K; ++p) {
               CL_DTYPE b0 = *(b + p * N + col + col_offset);
               CL_DTYPE a0 = *(a + p);
               c0 += a0 * b0;
           }
#ifdef RELU
           c[col + col_offset] = activation(c0);
#else
           c[col + col_offset] = c0;
#endif
       }
    }
}


// fc_gemm_4x4: for fc with M = 1
// a: param.input  {M, K}
// b: param.w      {K, N}
// c: param.output {M, N}
__kernel
void fc_gemm_4x4(__global const CL_DTYPE* a,
                 __global const CL_DTYPE* b,
                 __global const CL_DTYPE* bias,
                 __global CL_DTYPE* c,
                 const int M, const int N, const int K) {
    const int row = get_global_id(0) << 2; // id: [0, M>>2) height of out == M
    const int col = get_global_id(1) << 2; // id: [0, N>>2) width of out == N

    if (row+3 < M && col+3 < N) {
        CL_DTYPE bias0 = bias ? bias[col]   : 0,
                 bias1 = bias ? bias[col+1] : 0,
                 bias2 = bias ? bias[col+2] : 0,
                 bias3 = bias ? bias[col+3] : 0;

        CL_DTYPE c00 = bias0, c01 = bias1, c02 = bias2, c03 = bias3,
                 c10 = bias0, c11 = bias1, c12 = bias2, c13 = bias3,
                 c20 = bias0, c21 = bias1, c22 = bias2, c23 = bias3,
                 c30 = bias0, c31 = bias1, c32 = bias2, c33 = bias3;

       for (int p = 0; p < K; ++p) {
            CL_DTYPE
                a00 = *(a + row       * K + p),
                a10 = *(a + (row + 1) * K + p),
                a20 = *(a + (row + 2) * K + p),
                a30 = *(a + (row + 3) * K + p),

                b00 = *(b + p * N + col),
                b01 = *(b + p * N + (col + 1)),
                b02 = *(b + p * N + (col + 2)),
                b03 = *(b + p * N + (col + 3));

            c00 += a00 * b00; c01 += a00 * b01; c02 += a00 * b02; c03 += a00 * b03;
            c10 += a10 * b00; c11 += a10 * b01; c12 += a10 * b02; c13 += a10 * b03;
            c20 += a20 * b00; c21 += a20 * b01; c22 += a20 * b02; c23 += a20 * b03;
            c30 += a30 * b00; c31 += a30 * b01; c32 += a30 * b02; c33 += a30 * b03;
        }
#if defined(RELU)
        c[row*N+col] = fmax(c00, 0);     c[row*N+(col+1)] = fmax(c01, 0);     c[row*N+(col+2)] = fmax(c02, 0);     c[row*N+(col+3)] = fmax(c03, 0);
        c[(row+1)*N+col] = fmax(c10, 0); c[(row+1)*N+(col+1)] = fmax(c11, 0); c[(row+1)*N+(col+2)] = fmax(c12, 0); c[(row+1)*N+(col+3)] = fmax(c13, 0);
        c[(row+2)*N+col] = fmax(c20, 0); c[(row+2)*N+(col+1)] = fmax(c21, 0); c[(row+2)*N+(col+2)] = fmax(c22, 0); c[(row+2)*N+(col+3)] = fmax(c23, 0);
        c[(row+3)*N+col] = fmax(c30, 0); c[(row+3)*N+(col+1)] = fmax(c31, 0); c[(row+3)*N+(col+2)] = fmax(c32, 0); c[(row+3)*N+(col+3)] = fmax(c33, 0);
#else
        c[row*N+col] = c00;     c[row*N+(col+1)] = c01;     c[row*N+(col+2)] = c02;     c[row*N+(col+3)] = c03;
        c[(row+1)*N+col] = c10; c[(row+1)*N+(col+1)] = c11; c[(row+1)*N+(col+2)] = c12; c[(row+1)*N+(col+3)] = c13;
        c[(row+2)*N+col] = c20; c[(row+2)*N+(col+1)] = c21; c[(row+2)*N+(col+2)] = c22; c[(row+2)*N+(col+3)] = c23;
        c[(row+3)*N+col] = c30; c[(row+3)*N+(col+1)] = c31; c[(row+3)*N+(col+2)] = c32; c[(row+3)*N+(col+3)] = c33;
#endif
    } else {
        for (int cidx = col; cidx < N; ++cidx) {
            for (int ridx = row; ridx < M; ++ridx) {
                CL_DTYPE a0, b0, c0 = bias ? bias[cidx] : 0;
                for (int p = 0; p < K; ++p) {
                    a0 = *(a + ridx * K + p);
                    b0 = *(b + p * N + cidx),
                    c0 += a0 * b0;
                }
#if defined(RELU)
                c[ridx * N + cidx] = fmax(c0, 0);
#else
                c[ridx * N + cidx] = c0;
#endif
            }
        }
    }
}