conv_depthwise.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/conv_depthwise.h"
#include "lite/backends/arm/math/conv_block_utils.h"
#include "lite/backends/arm/math/conv_impl.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <>
void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  auto kw = w_dims[3];
  // select dw conv kernel
  if (kw == 3) {
    VLOG(5) << "invoke 3x3 dw conv fp32";
    /// trans weights
    constexpr int cblock = 4;
    auto oc = w_dims[0];
    auto kh = w_dims[2];
    auto cround = ROUNDUP(oc, cblock);
    weights_.Resize({cround, 1, kh, kw});
    auto w_data = weights_.mutable_data<float>();
    auto w_data_in = param.filter->data<float>();
    lite::arm::math::conv_trans_weights_numc(
        w_data_in, w_data, oc, 1, cblock, kh * kw);
    impl_ = lite::arm::math::conv_depthwise_3x3_fp32;
    flag_trans_weights_ = true;
  } else if (kw == 5) {
    VLOG(5) << "invoke 5x5 dw conv fp32";
    impl_ = lite::arm::math::conv_depthwise_5x5_fp32;
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  int kh = w_dims[2];
  int kw = w_dims[3];
  int oc = w_dims[0];
  /// update scale
  float in_scale = param.input_scale;
  auto& scale = param.weight_scale;
  CHECK(scale.size() == 1 || scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  w_scale_.resize(oc);
  for (int i = 0; i < oc; ++i) {
    if (scale.size() == 1) {
      w_scale_[i] = scale[0] * in_scale;
    } else {
      w_scale_[i] = scale[i] * in_scale;
    }
  }
  /// select dw conv kernel
  if (kw == 3) {
    VLOG(5) << "invoke 3x3 dw conv int8 kernel fp32 out";
    impl_ = lite::arm::math::conv_depthwise_3x3_int8_fp32;
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9);
    flag_trans_weights_ = true;
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  int kw = w_dims[3];
  int kh = w_dims[2];
  int oc = w_dims[0];
  /// update scale
  float in_scale = param.input_scale;
  float out_scale = param.output_scale;
  auto& scale = param.weight_scale;
  CHECK(scale.size() == 1 || scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  w_scale_.resize(oc);
  for (int i = 0; i < oc; ++i) {
    if (scale.size() == 1) {
      w_scale_[i] = scale[0] * in_scale / out_scale;
    } else {
      w_scale_[i] = scale[i] * in_scale / out_scale;
    }
  }
  /// update bias
  if (param.bias) {
    bias_.Resize(param.bias->dims());
    auto ptr = bias_.mutable_data<float>();
    auto ptr_in = param.bias->data<float>();
    for (int i = 0; i < bias_.numel(); ++i) {
      ptr[i] = ptr_in[i] / out_scale;
    }
    flag_trans_bias_ = true;
  }
  /// select dw conv kernel
  if (kw == 3) {
    VLOG(5) << "invoke 3x3 dw conv int8 kernel int8 out";
    impl_ = lite::arm::math::conv_depthwise_3x3_int8_int8;
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9);
    flag_trans_weights_ = true;
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

template <>
void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<float>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<float>()
                                           : param.filter->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<int8_t>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<int8_t>()
                                           : param.filter->data<int8_t>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<int8_t>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<int8_t>()
                                           : param.filter->data<int8_t>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<int8_t>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle