optimizer.h 10.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19
#include <string>
20
#include <utility>
Y
Yan Chunwei 已提交
21
#include <vector>
22
#include "lite/core/mir/elimination/control_flow_op_unused_inputs_and_outputs_eliminate_pass.h"
Y
Yan Chunwei 已提交
23 24
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
25
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
40 41 42
// TODO(hong1986032) Support the following passes for the subblocks
const std::set<std::string> kSubblockUnsupportedPasses(
    {"memory_optimize_pass"});
Y
Yan Chunwei 已提交
43 44
class Optimizer {
 public:
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  Optimizer() {}

  Optimizer(Program&& program, const std::vector<Place>& valid_places) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";

    core::KernelPickFactor factor;
    factor.ConsiderTarget();
    factor.ConsiderPrecision();
    factor.ConsiderDataLayout();

    Run(std::move(program), valid_places, factor, {});
  }

Y
Yan Chunwei 已提交
60 61 62 63 64 65 66
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
67 68 69 70 71 72 73 74 75 76
    CHECK(graphs_.empty()) << "duplicate optimize found";

    auto block_size = program.block_size();
    for (size_t block_idx = 0; block_idx < block_size; ++block_idx) {
      std::unique_ptr<mir::SSAGraph> graph;
      graph.reset(new mir::SSAGraph);
      graph->Build(program, valid_places, block_idx);
      graph->SetValidPlaces(valid_places);
      graphs_.emplace_back(std::move(graph));
    }
Y
Yan Chunwei 已提交
77 78 79

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();
80
    InitControlFlowOpUnusedInputsAndOutputsEliminatePass();
Y
Yan Chunwei 已提交
81

82
    if (passes.empty() || passes.size() == 1) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      std::vector<std::string> passes_local{{
          "lite_quant_dequant_fuse_pass",         //
          "weight_quantization_preprocess_pass",  //
          "lite_conv_elementwise_fuse_pass",      // conv-elemwise-bn
          "lite_conv_bn_fuse_pass",               //
          "lite_conv_elementwise_fuse_pass",      // conv-bn-elemwise
          "lite_conv_conv_fuse_pass",             //
          // TODO(Superjomn) Refine the fusion related design to select fusion
          // kernels for devices automatically.
          "lite_conv_activation_fuse_pass",              //
          "lite_var_conv_2d_activation_fuse_pass",       //
          "lite_match_matrix_activation_fuse_pass",      //
          "lite_fc_fuse_pass",                           //
          "lite_shuffle_channel_fuse_pass",              //
          "lite_transpose_softmax_transpose_fuse_pass",  //
          "lite_interpolate_fuse_pass",                  //
          "identity_scale_eliminate_pass",               //
          "lite_scales_fuse_pass",                       //
          "lite_sequence_reverse_embedding_fuse_pass",   //
          "elementwise_mul_constant_eliminate_pass",     //
          "lite_sequence_pool_concat_fuse_pass",         //
          "lite_scale_activation_fuse_pass",             //
H
HappyAngel 已提交
105 106
#if (defined LITE_WITH_LIGHT_WEIGHT_FRAMEWORK) || (defined LITE_WITH_CUDA) || \
    (defined LITE_WITH_ARM)
107
          "lite_elementwise_activation_fuse_pass",  //
Y
Yan Chunwei 已提交
108
#endif
109 110
          "identity_dropout_eliminate_pass",
          "__xpu__resnet_fuse_pass",
W
weihaoji 已提交
111
          "__xpu__resnet_d_fuse_pass",
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
          "__xpu__resnet_cbam_fuse_pass",
          "__xpu__conv2d_fuse_pass",
          "__xpu__conv2d_link_previous_out_max_pass",
          "__xpu__sfa_head_meanstd_fuse_pass",
          "__xpu__sfa_head_moment_fuse_pass",
          "__xpu__mmdnn_fuse_pass",
          "__xpu__multi_encoder_fuse_pass",
          "__xpu__embedding_with_eltwise_add_fuse_pass",
          "__xpu__fc_fuse_pass",
          "quantized_op_attributes_inference_pass",  // Only for fully
                                                     // quantized model, infer
                                                     // the output scale and
                                                     // fix the attribute
                                                     // 'enable_int8' for all
                                                     // of the quantized ops.
          "npu_subgraph_pass",
          "huawei_ascend_npu_subgraph_pass",
          "xpu_subgraph_pass",
          "bm_subgraph_pass",
          "apu_subgraph_pass",
          "rknpu_subgraph_pass",
          "mlu_subgraph_pass",
          "control_flow_op_unused_inputs_and_outputs_eliminate_pass",
          "static_kernel_pick_pass",  // pick original kernel from graph

          "remove_tf_redundant_ops_pass",
          "variable_place_inference_pass",  // inference arg/var's

          "mlu_postprocess_pass",
          // info(target/precision/layout/device)
          // using kernel info
          "argument_type_display_pass",  // debug pass: show arg-type-node's
                                         // info
                                         // (target/precision/layout/device)

          "type_target_cast_pass",  // add io_copy/io_copy_once if meet
                                    // different targets when last and next
                                    // node
          "variable_place_inference_pass",  //
          "argument_type_display_pass",     //

          "io_copy_kernel_pick_pass",    //
          "argument_type_display_pass",  //

          "variable_place_inference_pass",  //
          "argument_type_display_pass",     //

          "type_precision_cast_pass",       //
          "variable_place_inference_pass",  //
          "argument_type_display_pass",     //

          "type_layout_cast_pass",  // add layout/layout_once op if meet
                                    // different layout when last and next node
          "argument_type_display_pass",  //

          "variable_place_inference_pass",  //
          "argument_type_display_pass",

          "runtime_context_assign_pass",
          "argument_type_display_pass",
          "lite_reshape_fuse_pass",
          "memory_optimize_pass"  // you can comment this line when enable
                                  // PRECISION_PROFILE
      }};
176

177
      if (passes.size() == 1) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        // multi_stream_analysis_pass must be in the front of
        // runtime_context_assign_pass
        const std::string msa_pass{"multi_stream_analysis_pass"};
        const std::string depend_pass{"runtime_context_assign_pass"};
        if (passes[0] == msa_pass) {
          auto iter =
              std::find(passes_local.begin(), passes_local.end(), depend_pass);
          if (iter != passes_local.end()) {
            passes_local.insert(iter, msa_pass);
          } else {
            CHECK(false) << "Not find " << depend_pass;
          }
        } else {
          passes_local.push_back(passes[0]);
        }
193
      }
194
      RunPasses(passes_local);
Y
Yan Chunwei 已提交
195 196 197 198 199 200
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

201
  const Scope* exec_scope() const { return exec_scope_; }
202

Y
Yan Chunwei 已提交
203 204 205 206
  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
207 208 209
    for (auto& graph : graphs_) {
      pass->Apply(graph);
    }
Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

225 226 227 228 229 230 231 232 233 234
  void InitControlFlowOpUnusedInputsAndOutputsEliminatePass() {
    auto* pass =
        mir::PassManager::Global()
            .LookUp<mir::ControlFlowOpUnusedInputsAndOutputsEliminatePass>(
                "control_flow_op_unused_inputs_and_outputs_eliminate_pass");
    CHECK(pass);
    CHECK(!graphs_.empty());
    pass->SetAllGraphs(&graphs_);
  }

Y
Yan Chunwei 已提交
235 236 237
  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

238 239 240 241
  const mir::SSAGraph& ssa_graph(int block_idx = kRootBlockIdx) const {
    CHECK(!graphs_.empty());
    CHECK(graphs_[block_idx]);
    return *graphs_[block_idx];
Y
Yan Chunwei 已提交
242 243
  }

244 245 246 247
  mir::SSAGraph* mutable_ssa_graph(int block_idx = kRootBlockIdx) {
    CHECK(!graphs_.empty());
    CHECK(graphs_[block_idx]);
    return graphs_[block_idx].get();
Y
Yan Chunwei 已提交
248 249
  }

250
  Scope* exec_scope() { return exec_scope_; }
Y
Yan Chunwei 已提交
251 252 253 254 255 256 257

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
    for (auto& x : passes) {
258 259
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
260 261 262 263 264
      if (!pass) {
        LOG(INFO) << "   - Skip " << x << " because the pass isn't found.";
        continue;
      }
      std::set<TargetType> targets;
265
      for (const auto& place : valid_places_) {
266
        targets.insert(place.target);
267
      }
268 269
      bool matched =
          PassMatchesTarget(*pass, targets) && PassMatchesKernels(*pass);
270
      if (!matched) {
271 272
        LOG(INFO) << "   - Skip " << x
                  << " because the target or kernel does not match.";
273
      } else {
274 275 276 277 278 279 280 281
        // Check the pass whether it is supported for processing subblocks
        if (kSubblockUnsupportedPasses.count(x)) {
          pass->Apply(graphs_[kRootBlockIdx]);
        } else {
          for (auto& graph : graphs_) {
            pass->Apply(graph);
          }
        }
282 283
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
284 285 286 287
    }
  }

 private:
288
  std::vector<std::unique_ptr<mir::SSAGraph>> graphs_;
Y
Yan Chunwei 已提交
289
  std::vector<Place> valid_places_;
290
  Scope* exec_scope_{};
Y
Yan Chunwei 已提交
291 292 293 294 295
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle