conv_compute.cc 33.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/conv_compute.h"
16

Y
Yan Chunwei 已提交
17
#include <sstream>
18 19

#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ConvCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
45 46
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
47 48
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
49 50
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
51 52
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
H
HappyAngel 已提交
53
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
Y
Yan Chunwei 已提交
54 55
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

H
HappyAngel 已提交
56 57 58
  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3]));

Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];

  if (kernel_h == 1 && kernel_w == 1 && stride_h == 1 && stride_w == 1 &&
H
HappyAngel 已提交
72
      zero_pad && no_dilation && pad_equal) {
Y
Yan Chunwei 已提交
73 74 75 76
    // conv2d_1x1
    kernel_func_names_.push_back("gemm_batch");
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
    if (relu_fused) {
77 78 79 80
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
81
    } else {
82
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
83 84
    }
    impl_ = &ConvCompute::Conv2d1x1;
H
HappyAngel 已提交
85
  } else if (pad_equal) {
Y
Yan Chunwei 已提交
86 87 88 89
    kernel_func_names_.push_back("im2col");
    kernel_func_names_.push_back("gemm_batch");
    kernel_func_paths_.push_back("buffer/im2col_kernel.cl");
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
90
    build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
91
    if (relu_fused) {
92 93 94 95
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
96
    } else {
97
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
98 99 100 101 102
    }
    impl_ = &ConvCompute::GemmlikeConv2d;
    col_buffer_.reset(new lite::Tensor);
    col_buffer_->Resize({bs, c_in, kernel_h * kernel_w, h_out * w_out});
    col_buffer_->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
H
HappyAngel 已提交
103 104 105
  } else {
    LOG(FATAL) << "This pad not support ! " << paddings[0] << ", "
               << paddings[1] << ", " << paddings[2] << ", " << paddings[3];
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  }

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvCompute::GemmlikeConv2d() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_in = x_dims[2];
  int w_in = x_dims[3];
H
HappyAngel 已提交
123 124
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
125 126 127 128 129
  int c_out = output_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
130 131
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
132 133
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
134 135
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

  auto* x_buf = param.x->data<float, cl::Buffer>();
  auto* filter_buf = param.filter->data<float, cl::Buffer>();
  auto* bias_buf = (param.bias == nullptr)
                       ? static_cast<cl::Buffer*>(nullptr)
                       : param.bias->data<float, cl::Buffer>();
  auto* output_buf =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  auto* col_buf = col_buffer_->mutable_data<float, cl::Buffer>();

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto img2col_kernel = context.cl_context()->GetKernel(kernel_key.str());

  int n_threads = c_in * h_out * w_out;
  int in_stride = c_in * h_in * w_in;
  int out_stride = c_in * kernel_h * kernel_w * h_out * w_out;
  int img_offset = 0;
  int col_offset = 0;
  int arg_idx = 0;
  cl_int status;
  for (int b = 0; b < bs; b++) {
    img_offset = b * in_stride;
    col_offset = b * out_stride;
    arg_idx = 0;
    status = img2col_kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, img_offset);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, n_threads);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, *col_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, col_offset);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{static_cast<size_t>(out_stride)};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        img2col_kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        nullptr);
    CL_CHECK_FATAL(status);
  }

  int m = c_out;
  int k = c_in * kernel_h * kernel_w;
  int n = h_out * w_out;
  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;
  kernel_key.str("");
  kernel_key << kernel_func_names_[1] << build_options_[1];
  auto gemm_kernel = context.cl_context()->GetKernel(kernel_key.str());
  GemmBatched(
      gemm_kernel, col_buf, filter_buf, bias_buf, output_buf, bs, m, n, k);
}

void ConvCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  const int batch_size = param.x->dims()[0];
  const int k = param.x->dims()[1];  // K: input_channel
  const int n = param.x->dims()[2] *
                param.x->dims()[3];       // N == X_HxW == input_h * input_w
  const int m = param.output->dims()[1];  // M: output_channel == filter number

  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;

  if (param.groups != 1) {
    LOG(FATAL) << "conv2d_1x1 with group > 1 not supported and param.groups = "
               << param.groups;
  }

  auto* x_d = param.x->data<float, cl::Buffer>();
  auto* filter_d = param.filter->data<float, cl::Buffer>();
  auto* bias_d = (param.bias == nullptr)
                     ? static_cast<cl::Buffer*>(nullptr)
                     : param.bias->data<float, cl::Buffer>();
  auto* output_d =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_.front() << build_options_.front();
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k);
}
// a: filter_d ==> <m, k> <=> <oc, ic>
// b: x_d      ==> <k, n> <=> <ic, ih*iw>
// c: output_d ==> <m, n> <=> <oc, ih*iw>
void ConvCompute::GemmBatched(cl::Kernel& kernel,
                              const cl::Buffer* x_d,
                              const cl::Buffer* filter_d,
                              const cl::Buffer* bias_d,
                              cl::Buffer* output_d,
                              const int batch_size,
                              const int m,
                              const int n,
                              const int k) {
  auto global_work_size = cl::NDRange{static_cast<size_t>((m + 7) / 8),
                                      static_cast<size_t>((n + 3) / 4),
                                      static_cast<size_t>(batch_size)};
  auto local_work_size = cl::NDRange{16, 16};  // cl::NullRange;

  auto& context = ctx_->As<OpenCLContext>();
  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, *filter_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *x_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *bias_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *output_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, m);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, n);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, k);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch_size);
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      local_work_size,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);

  context.cl_wait_list()->emplace(output_d, event_);
}

void ConvCompute::Run() { (this->*impl_)(); }

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  float* filter_cpu = param.filter->mutable_data<float>();
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
       (paddings[2] == paddings[3]));
  bool stride_equal = stride_h == stride_w;
  bool dilation_equal = dilations[0] == dilations[1];

  CHECK(pad_equal && stride_equal && dilation_equal);

  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];
  if (kernel_h == 1 && kernel_w == 1) {
    // conv2d_1x1
    if (param.x->dims()[1] % 4 == 0) {
      kernel_func_names_.push_back("conv2d_1x1_simple");
    } else {
      kernel_func_names_.push_back("conv2d_1x1");
    }
    kernel_func_paths_.push_back("image/conv2d_1x1_kernel.cl");

    CLImageConverterNWBlock converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    std::vector<float> filter_image_v(filter_image_dims[0] *
                                      filter_image_dims[1] * 4);  // 4 : RGBA
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
    filter_gpu_image_.mutable_data<float, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d1x1;
  } else if (kernel_h == 5 && kernel_w == 5) {
    // conv2d_5x5
    kernel_func_names_.push_back("conv2d_5x5");
    kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    std::vector<float> filter_image_v(filter_image_dims[0] *
                                      filter_image_dims[1] * 4);  // 4 : RGBA
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
    filter_gpu_image_.mutable_data<float, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d5x5;
  } else if (kernel_h == 7 && kernel_w == 7) {
    // conv2d_7x7
    kernel_func_names_.push_back("conv2d_7x7");
    kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    std::vector<float> filter_image_v(filter_image_dims[0] *
                                      filter_image_dims[1] * 4);  // 4 : RGBA
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
    this->filter_gpu_image_.mutable_data<float, cl::Image2D>(
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d7x7;
  } else {
    LOG(FATAL) << "conv image compute not support this condition yet! ";
  }

  std::string build_options_single(" -DCL_DTYPE_float");
  // relu options
  if (relu_fused) {
    build_options_single += " -DRELU";
  } else if (param.activation_param.active_type ==
             lite_api::ActivationType::kRelu6) {
    build_options_single += " -DRELU6";
  } else {
    // do nothing
  }
  // bias options
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  if (has_bias) {
    build_options_single +=
        is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";

    // convert cpu buffer bias --> gpu image
    CLImageConverterFolder bias_converter;
    const DDim& bias_image_dims =
        bias_converter.InitImageDimInfoWith(param.bias->dims());
    std::vector<float> bias_image_v(bias_image_dims[0] * bias_image_dims[1] *
                                    4);
    float* bias_cpu_data = param.bias->mutable_data<float>();
    bias_converter.NCHWToImage(
        bias_cpu_data, bias_image_v.data(), param.bias->dims());
    this->bias_gpu_image_.mutable_data<float, cl::Image2D>(
        bias_image_dims[0], bias_image_dims[1], bias_image_v.data());
    // convert cpu buffer bias --> gpu image --- end ----
  }

  build_options_.push_back(build_options_single);

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvImageCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto* input_image = param.x->data<float, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<float, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d_1x1 params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<float, cl::Image2D>();
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  int maped_w = maptofactor(w, 4);

  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "maped_w: " << maped_w;
  VLOG(4) << "hasbias: " << has_bias;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, maped_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(maped_w),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
void ConvImageCompute::Conv2d5x5() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto* input_image = param.x->data<float, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<float, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<float, cl::Image2D>();
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
void ConvImageCompute::Conv2d7x7() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto* input_image = param.x->data<float, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<float, cl::Image2D>();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<float, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<float, cl::Image2D>();
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

void ConvImageCompute::Run() { (this->*impl_)(); }

Y
Yan Chunwei 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::ConvCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
                     kFloat,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();