conv2d_7x7_kernel.cl 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#include <cl_common.h>

__kernel void conv2d_7x7(__private const int global_size_dim0,
                         __private const int global_size_dim1,
                         __private const int global_size_dim2,
                         __read_only image2d_t input_image,
                         __read_only image2d_t filter_image,
#if defined(BIASE_CH) || defined(BIASE_ELE)
                         __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                         __read_only image2d_t new_scale,
                         __read_only image2d_t new_biase,
#endif
                         __write_only image2d_t output_image,
                         __private const int stride,
                         __private const int offset,
                         __private const int input_c,
                         __private const int dilation,
                         __private const int input_width,  /* of one block */
                         __private const int input_height, /* of one block */
                         __private const int output_width,
                         __private const int output_height) {

  const int out_c = get_global_id(0);
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);

  if (out_c >= global_size_dim0 || out_w >= global_size_dim1 ||
      out_nh >= global_size_dim2) {
    return;
  }

  const int batch_index = out_nh / output_height;
  const int out_nh_in_one_batch = out_nh % output_height;

  const filter_n0 = 4 * out_c + 0;
  const filter_n1 = 4 * out_c + 1;
  const filter_n2 = 4 * out_c + 2;
  const filter_n3 = 4 * out_c + 3;

  int2 stride_xy;
  stride_xy.x = stride;
  stride_xy.y = stride;

  int2 ouput_pos_in_one_block;
  ouput_pos_in_one_block.x = out_w;
  ouput_pos_in_one_block.y = out_nh_in_one_batch;

  const sampler_t sampler =
      CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;

  int2 in_pos_in_one_block;
  in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
  in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

#ifdef BIASE_CH
  CL_DTYPE4 output =
      READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(out_c, 0));
#elif defined(BIASE_ELE)
  CL_DTYPE4 output = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, output_pos);
#else
  CL_DTYPE4 output = 0.0f;
#endif

  CL_DTYPE4 input;
  CL_DTYPE4 filter[4];
  int2 filter_pos0;
  int2 filter_pos1;
  int2 filter_pos2;
  int2 filter_pos3;
  for (int i = 0; i < input_c; ++i) {
    int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x,
                         in_pos_in_one_block.y + batch_index * input_height);
    for (int j = 0; j < 7; j++) {
      for (int k = 0; k < 7; k++) {
        input = select(
            READ_IMG_TYPE(CL_DTYPE_CHAR,
                          input_image,
                          sampler,
                          (int2)(pos_in.x + (j - 3) * dilation,
                                 pos_in.y + (k - 3) * dilation)),
            (CL_DTYPE4)(0.0f),
            (ushort4)(
                (in_pos_in_one_block.x + (j - 3) * dilation < 0 ||
                 in_pos_in_one_block.y + (k - 3) * dilation < 0 ||
                 in_pos_in_one_block.x + (j - 3) * dilation >= input_width ||
                 in_pos_in_one_block.y + (k - 3) * dilation >= input_height)
                << 15));
        int filter_h = k;
        int filter_w = j;
        int filter_c = i;

        filter_pos0.x = filter_c * 7 + filter_w;
        filter_pos0.y = filter_n0 * 7 + filter_h;

        filter_pos1.x = filter_c * 7 + filter_w;
        filter_pos1.y = filter_n1 * 7 + filter_h;

        filter_pos2.x = filter_c * 7 + filter_w;
        filter_pos2.y = filter_n2 * 7 + filter_h;

        filter_pos3.x = filter_c * 7 + filter_w;
        filter_pos3.y = filter_n3 * 7 + filter_h;

        filter[0] =
            READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos0);
        filter[1] =
            READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos1);
        filter[2] =
            READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos2);
        filter[3] =
            READ_IMG_TYPE(CL_DTYPE_CHAR, filter_image, sampler, filter_pos3);

        output.x += dot(input, filter[0]);
        output.y += dot(input, filter[1]);
        output.z += dot(input, filter[2]);
        output.w += dot(input, filter[3]);
      }
    }
  }

#ifdef BATCH_NORM
  output = output * READ_IMG_TYPE(
                        CL_DTYPE_CHAR, new_scale, sampler, (int2)(out_c, 0)) +
           READ_IMG_TYPE(CL_DTYPE_CHAR, new_biase, sampler, (int2)(out_c, 0));
#endif

  output = activation_type4(output);

  WRITE_IMG_TYPE(CL_DTYPE_CHAR, output_image, output_pos, output);
}