conv_kernel.cpp 7.7 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15 16
#ifdef CONV_OP

L
liuruilong 已提交
17
#include "operators/kernel/conv_kernel.h"
S
sharper 已提交
18 19 20 21
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"
L
liuruilong 已提交
22 23 24 25

namespace paddle_mobile {
namespace operators {

S
sharper 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
template <typename DeviceType, typename T>
class AclConvOp : public acl::ACLOperator {
 public:
  AclConvOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_CONV;
  }
  ~AclConvOp() = default;
  AclConvOp(const AclConvOp&) = delete;
  AclConvOp& operator=(const AclConvOp&) = delete;
  AclConvOp(AclConvOp&&) = delete;
  AclConvOp& operator=(AclConvOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const ConvParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth, args.batch);
    arm_compute::TensorShape output_shape(args.out_cols, args.out_rows,
                                          args.out_depth, args.out_num);
    arm_compute::TensorShape weights_shape(args.filter_cols, args.filter_rows,
                                           args.in_depth / args.num_group,
                                           args.out_depth);
    // arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::PadStrideInfo conv_info(
        args.stride_cols, args.stride_rows, args.pad_cols, args.pad_rows,
        arm_compute::DimensionRoundingType::FLOOR);

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    check_direct_conv();
    //[kernel_x, kernel_y, IFM, OFM]
    new_tensor(weights(), weights_shape, args.weight_data);
    //[OFM]
    // if (args.biases_data) {
    //    new_tensor(biases(),biases_shape,args.biases_data);
    //}

    group() = args.num_group;

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(conv, this, conv_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const ConvParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_ || args.num_group >= 5) {
      bypass_acl = true;
    }
    if (args.dim > 2) {
      bypass_acl = true;
    }
    if (args.dilated) {
      bypass_acl = true;
    }
    return bypass_acl;
  }

 private:
  void check_direct_conv() {
    bool use_direct_conv = false;
    const char* pDirectConv;
    pDirectConv = getenv("DIRECTCONV");
    if (pDirectConv) {
      unsigned int bdirectconv;
      sscanf(pDirectConv, "%i", &bdirectconv);
      if (bdirectconv != use_direct_conv) {
        use_direct_conv = bdirectconv;
        printf("DIRECTCONV<%s>\n", pDirectConv);
        printf("DIRECTCONV: %x\n", use_direct_conv);
      }
    }
    int pad_data[2], kernel[2];
    pad_data[1] = args.pad_rows;
    pad_data[0] = args.pad_cols;
    kernel[1] = args.filter_rows;
    kernel[0] = args.filter_cols;
    if (use_direct_conv && ((kernel[0] == 1 && kernel[1] == 1 &&
                             pad_data[0] == 0 && pad_data[1] == 0) ||
                            (kernel[0] == 3 && kernel[1] == 3 &&
                             pad_data[0] <= 1 && pad_data[1] <= 1))) {
      setConvMethod();  // NEDirectConvolutionLayer only for 1x1 and 3x3
    }
  }

  void AclParametersByContext(const ConvParam& param) {
    const Tensor* input = param.Input();
    Tensor filter = *param.Filter();
    Tensor* output = param.Output();

    int groups = param.Groups();
    std::vector<int> strides = param.Strides();
    std::vector<int> paddings = param.Paddings();
    std::vector<int> dilations = param.Dilations();

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>();
    const T* weight_data = filter.data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;
    args.weight_data = (void*)weight_data;
    args.biases_data = nullptr;

    // try {
    //     bias = context.Input<framework::Tensor>("Bias");
    // } catch (const std::exception& e) {
    // }
    // if (bias) {
    //     const T* biases_data = bias->data<T>();
    //     args.biases_data = (void*)biases_data;
    // }

    args.num_group = groups;

    args.dilation_rows = dilations[0];
    args.dilation_cols = dilations[1];
    if (dilations[0] != 1 || dilations[1] != 1) {
      args.dilated = true;
    }

    // NCHW
    // std::cout << "In dims: " << (input->dims()).size() << std::endl;
    args.batch = input->dims()[0];
    args.in_depth = input->dims()[1];
    args.in_rows = input->dims()[2];
    args.in_cols = input->dims()[3];
    std::cout << "In N: " << args.batch << " C: " << args.in_depth
              << " H: " << args.in_rows << " W: " << args.in_cols << "\n";
    // NCHW
    // std::cout << "Out dims: " << (output->dims()).size() << std::endl;
    args.out_num = output->dims()[0];
    args.out_depth = output->dims()[1];
    args.out_rows = output->dims()[2];
    args.out_cols = output->dims()[3];
    // std::cout <<"Out N: " << static_cast<int>(output->dims()[0])
    //  << " C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
    // MCHW = OIHW
    args.filter_rows = filter.dims()[2];
    args.filter_cols = filter.dims()[3];
    // std::cout <<"Filter O: " << static_cast<int>(filter.dims()[0])
    //  << " I: " <<  static_cast<int>(filter.dims()[1])
    //  << " H: " << args.filter_rows << " W: " << args.filter_cols << "\n";

    // strides(h_stride, w_stride)
    args.stride_rows = strides[0];
    args.stride_cols = strides[1];
    // std::cout <<"Stride H: " << args.stride_rows << " W: " <<
    // args.stride_cols << "\n";

    // paddings(h_pad, w_pad)
    args.pad_rows = paddings[0];
    args.pad_cols = paddings[1];
    // std::cout <<"Pad H: " << args.pad_rows << " W: " << args.pad_cols <<
    // "\n";
  }
  acl::AclParameters args;
};

L
liuruilong 已提交
197
template <>
E
eclipsess 已提交
198
bool ConvKernel<GPU_MALI, float>::Init(ConvParam* param) {
S
sharper 已提交
199 200 201 202 203 204
  AclConvOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclConvOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
L
liuruilong 已提交
205 206 207
  return true;
}

L
liuruilong 已提交
208
template <>
S
sharper 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
void ConvKernel<GPU_MALI, float>::Compute(const ConvParam& param) const {
  std::cout << "init acl" << std::endl;
  AclConvOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  if (acl_op->Bypass_acl(param)) {
    std::cout << "init acl failed" << std::endl;
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
  acl_op->InitAclLayer(param);
  acl_op->RunAcl((void*)input_data, (void*)output_data);
L
liuruilong 已提交
225
}
L
liuruilong 已提交
226

L
liuruilong 已提交
227 228
template class ConvKernel<GPU_MALI, float>;
}  // namespace operators
L
liuruilong 已提交
229
}  // namespace paddle_mobile
L
liuruilong 已提交
230 231

#endif
S
sharper 已提交
232
#endif